Zhu's algebra and the C_{2}-algebra in the symplectic and the orthogonal cases

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2010 J. Phys. A: Math. Theor. 43135206
(http://iopscience.iop.org/1751-8121/43/13/135206)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.157
The article was downloaded on 03/06/2010 at 08:43

Please note that terms and conditions apply.

Zhu's algebra and the $\boldsymbol{C}_{\mathbf{2}}$-algebra in the symplectic and the orthogonal cases

Evgeny Feigin ${ }^{1,2}$ and Peter Littelmann ${ }^{3}$
${ }^{1}$ Tamm Department of Theoretical Physics, Lebedev Physics Institute, Leninisky prospect, 53, 119991, Moscow, Russia
${ }^{2}$ French-Russian Poncelet Laboratory, Independent University of Moscow, Moscow, Russia
${ }^{3}$ Mathematisches Institut, Universität zu Köln, Weyertal 86-90, D-50931 Köln, Germany
E-mail: evgfeig@gmail.com and littelma@math.uni-koeln.de

Received 18 November 2009, in final form 13 January 2010
Published 12 March 2010
Online at stacks.iop.org/JPhysA/43/135206

Abstract

We prove that Zhu's algebra and the C_{2}-algebra of type C_{m} have the same dimension, and we compute the graded character of the latter. Maximal parabolic subalgebras of the symplectic algebra play a central role in our construction. For the orthogonal algebras our methods do not allow us to describe the whole C_{2}-algebras; we get only a description of a certain quotient of the algebra.

PACS numbers: $02.20 . \mathrm{Sv}, 02.20 . \mathrm{Tw}$

Introduction

In this paper, we continue the study of Zhu's algebras and C_{2}-algebras of WZW models, initiated in [FFL]. We briefly recall the setup.

The theory of vertex operator algebras (VOAs) plays a key role in the mathematical description of the structures arising in the conformal field theories (see [BF, GabGod, K2]). In particular spaces of states, partition functions and amplitudes can be described via the structure theory of vertex operator algebras and their representation theory.

The representation theory of a vertex operator algebra \mathcal{V} is, in general, very complicated. But in some special cases (so-called rational VOAs) it is controlled by a certain finitedimensional semisimple associative algebra $A(\mathcal{V})$, called Zhu's algebra (see [FZ, Z]). More precisely, irreducible representations of $A(\mathcal{V})$ are in one-to-one correspondence with irreducible representations of \mathcal{V}. Zhu's algebra can be explicitly computed in some special cases (for example for minimal models and WZW models). In this paper, we only deal with the WZW models associated with a simple Lie algebra \mathfrak{g} on the non-negative integer level k. The corresponding Zhu's algebra (denoted by $A(\mathfrak{g} ; k)$) is given by (see [FZ])

$$
A(\mathfrak{g} ; k)=U(\mathfrak{g}) /\left\langle e_{\theta}^{k+1}\right\rangle
$$

where θ denotes the highest root, $e_{\theta} \in \mathfrak{g}$ is a corresponding root vector and $\left\langle e_{\theta}^{k+1}\right\rangle$ is the two-sided ideal in the universal enveloping algebra of \mathfrak{g} generated by e_{θ}^{k+1}.

As mentioned above, the rationality is a very important characterization of a VOA. There exists a condition (called the C_{2}-cofiniteness condition, see [CF, M1, M2, Z]) which guaranties the rationality. Namely, the C_{2}-algebra $A_{[2]}(\mathcal{V})$ attached to \mathcal{V} is defined as a quotient of \mathcal{V} by the linear span of the elements of the form $a_{n} b, n \leqslant-2$, with $a, b \in \mathcal{V}$ and a_{n} being Fourier modes of the field corresponding to a. The C_{2}-cofiniteness condition reads as $\operatorname{dim} A_{[2]}(\mathcal{V})<\infty$. The algebras $A(\mathcal{V})$ and $A_{[2]}(\mathcal{V})$ are very closely related (see [GG, GabGod, GN, N]). For WZW models, one has

$$
A_{[2]}(\mathfrak{g} ; k)=S^{\bullet}(\mathfrak{g}) /\left\langle U(\mathfrak{g}) \circ e_{\theta}^{k+1}\right\rangle
$$

where $S^{\bullet}(\mathfrak{g})$ denotes the symmetric algebra of \mathfrak{g}, '○' denotes the action of \mathfrak{g} on $S^{\bullet}(\mathfrak{g})$ induced by the adjoint action, $U(\mathfrak{g}) \circ e_{\theta}^{k+1} \subset S^{\bullet}(\mathfrak{g})$ is the (irreducible) \mathfrak{g}-module generated by $e_{\theta}^{k+1} \in S^{k+1}(\mathfrak{g})$, and $\left\langle U(\mathfrak{g}) \circ e_{\theta}^{k+1}\right\rangle$ is the ideal generated by this subspace.

It turned out that in several cases Zhu's algebra and the C_{2}-algebra have the same dimension (see [FFL, GG]). We note, however, that in general $A_{[2]}(\mathcal{V})$ can be viewed as a degeneration of $A(\mathcal{V})$ and thus may be bigger (this happens for example in the case of the WZW model of type E_{8} with $k=1$). We also note that the C_{2}-algebra has an extra grading missing in Zhu's algebra. For example, for $A_{[2]}(\mathfrak{g} ; k)$ this grading is inherited from the degree grading on $S^{\bullet}(\mathfrak{g})$. It is therefore natural to ask for the graded dimension (or graded character) of the C_{2}-algebra.

In [GG], Gaberdiel and Gannon conjectured an explicit formula for the graded character of $A_{[2]}(\mathfrak{g} ; k)$ for $\mathfrak{g}=\mathfrak{s l}_{n}$. They also conjectured that for all n and k one has $\operatorname{dim} A\left(\mathfrak{s l}_{n} ; k\right)=$ $\operatorname{dim} A_{[2]}\left(\mathfrak{s l}_{n} ; k\right)$. These conjectures were proved in [FFL]. In general, we have the following conjecture.

Conjecture 0.1. For all classical Lie algebras and all $k \geqslant 0$, one has

$$
\operatorname{dim} A(\mathfrak{g} ; k)=\operatorname{dim} A_{[2]}(\mathfrak{g} ; k)
$$

In this paper we prove the conjecture for \mathfrak{g} of type $\mathrm{C}\left(\mathfrak{g}=\mathfrak{s p}_{2 m}\right)$ and compute the graded character of $A_{[2]}\left(\mathfrak{s p}_{2 m} ; k\right)$.

Our main idea is to identify the C_{2}-algebra $A_{[2]}\left(\mathfrak{s p}_{2 m} ; k\right)$ with the irreducible representation $\mathbb{V}\left(k \omega_{2 m}\right)$ of the bigger algebra $\mathfrak{s p}_{4 m}$. We then use the geometry of the affine cone over the flag variety $S p_{4 m} / P_{2 m}$ and the restriction formulas by Littlewood, Koike and Terada [KT, Lw] to prove the graded character formula. Here $P_{2 m} \subset S p_{4 m}$ is the parabolic subgroup associated with the fundamental weight $\omega_{2 m}$.

Unfortunately, our methods do not generalize to the orthogonal Lie algebras. The $C_{2}{ }^{-}$ algebra $A_{[2]}\left(\mathfrak{s o}_{n} ; k\right)$ turns out to be bigger than the corresponding representation of $\mathfrak{s o}_{2 n}$ and, therefore, we can only describe a quotient of the C_{2}-algebra. We still show that this quotient (as a \mathfrak{g}-module) can be very naturally identified with a certain subspace of Zhu's algebra.

We close the introduction with the following remark. In [GabGod] (see also [GG, GN]), a new approach to confromal field theories, based on the spaces of correlation functions (amplitudes), is developed. These spaces can be defined in terms of quotients of spaces of states attached to a given conformal field theory (CFT). For instance, Zhu's algebras and the C_{2}-algebras are particular cases of these quotients. In general, the task to describe the spaces of correlation functions is very complicated. However, we hope that for WZW theories our approach, based on the algebra-geometric constructions from the representation theory of simple Lie algebras, can be useful.

The paper is organized as follows. In section 1, we recall the definitions of Zhu's algebra and the C_{2}-algebra and formulate the problem. In sections $2-4$, we work out the case of the symplectic algebra $\mathfrak{s p}_{2 m}$. In section 2 , we describe the connection between the C_{2}-algebra $A_{[2]}\left(\mathfrak{s p}_{2 m} ; k\right)$ and certain representations of $\mathfrak{s p}_{4 m}$. In section 3, we compute the graded character of $A_{[2]}\left(\mathfrak{s p}_{2 m} ; k\right)$. In section 4 , we prove conjecture 0.1 in type C_{m}. Finally, in section 5, we discuss the case of the orthogonal algebras.

1. Zhu's algebra and the C_{2}-algebra

1.1. Definitions

Let \mathfrak{g} be a simple Lie algebra. Let θ be the highest root of \mathfrak{g} and $e_{\theta} \in \mathfrak{g}$ be a highest weight vector in the adjoint representation. Fix a non-negative integer k. Let $P_{k}^{+}(\mathfrak{g})$ be the set of level k integrable \mathfrak{g} weights, i.e. the set of dominant integral \mathfrak{g} weights λ satisfying $(\lambda, \theta) \leqslant k$ (the Killing form has been normalized by the usual condition $(\theta, \theta)=2$). The following theorem 1.1 is proved in [FZ].
Theorem 1.1. The level k Zhu algebra $A(\mathfrak{g} ; k)$ is the quotient of the universal enveloping algebra $U(\mathfrak{g})$ by the two-sided ideal generated by e_{θ}^{k+1} :

$$
A(\mathfrak{g} ; k)=U(\mathfrak{g}) /\left\langle e_{\theta}^{k+1}\right\rangle .
$$

In addition, one has an isomorphism of \mathfrak{g}-modules:

$$
A(\mathfrak{g} ; k) \simeq \bigoplus_{\lambda \in P_{k}^{+}(\mathfrak{g})} V(\lambda) \otimes V(\lambda)^{*}
$$

The form of the description of $A(\mathfrak{g} ; k)$ arises ultimately because of the Peter-Weyl theorem.

Notation 1.2. Let $S(\mathfrak{g})=\bigoplus_{m=0}^{\infty} S^{m}(\mathfrak{g})$ be the symmetric algebra of \mathfrak{g}. For $v \in S^{m}(\mathfrak{g})$ and $a \in \mathfrak{g}$, let av $\in S^{m+1}(\mathfrak{g})$ be the product in the symmetric algebra. Each homogeneous summand $S^{m}(\mathfrak{g})$ is a \mathfrak{g}-module by the adjoint action on \mathfrak{g}. For $v \in S^{m}(\mathfrak{g})$ and $a \in \mathfrak{g}$, we denote by $a \circ v \in S^{m}(\mathfrak{g})$ the adjoint action of a.

The C_{2}-algebra associated with $\mathcal{V}(\mathfrak{g} ; k)$ can be described as follows. The level $k C_{2^{-}}$ algebra $A_{[2]}(\mathfrak{g} ; k)$ is the quotient of the symmetric algebra $S(\mathfrak{g})$ by the ideal generated by the subspace $V_{k+1}=U(\mathfrak{g}) \circ e_{\theta}^{k+1} \hookrightarrow S^{k+1}(\mathfrak{g})$:

$$
A_{[2]}(\mathfrak{g} ; k)=S(\mathfrak{g}) /\left\langle V_{k+1}\right\rangle
$$

Remark 1.3. The subspace $V_{k+1} \hookrightarrow S^{k+1}(\mathfrak{g})$ is isomorphic to the irreducible \mathfrak{g}-module $V((k+1) \theta)$ of highest weight $(k+1) \theta$. The algebra $A_{[2]}(\mathfrak{g} ; k)$ is naturally a \mathfrak{g}-module, the module structure being induced by the adjoint action. Note that $A_{[2]}(\mathfrak{g} ; k)$ is not a $\mathfrak{g} \oplus \mathfrak{g}$ module, differently from $A(\mathfrak{g} ; k)$.

Consider the standard filtration F_{\bullet} on the universal enveloping algebra $U(\mathfrak{g})$, such that $\operatorname{gr}_{\bullet} F \simeq S(\mathfrak{g})$. Let $F_{\bullet}(k)$ be the induced filtration on the quotient algebra $A(\mathfrak{g} ; k)$. We have an obvious surjection

$$
\begin{equation*}
A_{[2]}(\mathfrak{g} ; k) \rightarrow \operatorname{gr}_{\bullet} F(k) \tag{1.1}
\end{equation*}
$$

Therefore, we have a surjective homomorphism of \mathfrak{g}-modules

$$
\begin{equation*}
A_{[2]}(\mathfrak{g} ; k) \rightarrow A(\mathfrak{g} ; k) \tag{1.2}
\end{equation*}
$$

and thus $\operatorname{dim} A_{[2]}(\mathfrak{g} ; k) \geqslant \sum_{\beta \in P_{k}^{+}(\mathfrak{g})}\left(\operatorname{dim} V_{\beta}\right)^{2}$. A natural question is: when does this inequality turn into an equality? In this paper, we are also interested in the degree grading on $A_{[2]}(\mathfrak{g} ; k)$ and in the corresponding graded decomposition into the direct sum of \mathfrak{g}-modules. Let

$$
S(\mathfrak{g})=\bigoplus_{m \geqslant 0} S^{m}(\mathfrak{g})
$$

be the degree of decomposition of the symmetric algebra. This decomposition induces the decomposition of the C_{2}-algebra:

$$
\begin{equation*}
A_{[2]}(\mathfrak{g} ; k)=\bigoplus_{m \geqslant 0} A_{[2]}^{m}(\mathfrak{g} ; k) \tag{1.3}
\end{equation*}
$$

Each space $A_{[2]}^{m}(\mathfrak{g} ; k)$ is naturally a representation of \mathfrak{g}. Our main questions are as follows.
(i) Prove the equality of the dimensions of $A_{[2]}(\mathfrak{g} ; k)$ and $A(\mathfrak{g} ; k)$.
(ii) Find the decomposition of $A_{[2]}^{m}(\mathfrak{g} ; k)$ into the direct sum of irreducible \mathfrak{g}-modules.

Recall that the case $\mathfrak{g}=\mathfrak{s l}_{n}$ was considered in [GG] and [FFL]. To be more precise, it was conjectured in [GG] and proved in [FFL] that

$$
\operatorname{dim} A_{[2]}\left(\mathfrak{s l}_{n} ; k\right)=\operatorname{dim} A\left(\mathfrak{s l}_{n} ; k\right)
$$

and, as $\mathfrak{s l}_{n}$-modules (not as $\mathfrak{s l}_{n} \oplus \mathfrak{s l}_{n}$-modules, despite the description as tensor products), one has a decomposition

$$
A_{[2]}^{m}(k)=\frac{\bigoplus_{\substack{i: k \geqslant \lambda_{1}, \lambda_{n} \geqslant 0 \\ \lambda_{1}+\cdots+\lambda_{n}=m}} V(\lambda) \otimes V(\lambda)^{*}}{\bigoplus_{\substack{\lambda_{1} k-1 \geqslant \lambda_{1}, \lambda_{n} \geqslant 0 \\ \lambda_{1}+\cdots+\lambda_{n}=m-1}} V(\lambda) \otimes V(\lambda)^{*}},
$$

where the $\mathfrak{g l}_{n}$-module $V(\lambda)$ is regarded as $\mathfrak{s l}_{n}$-module with highest weight $\left(\lambda_{1}-\lambda_{n}, \ldots\right.$, $\lambda_{n-1}-\lambda_{n}$).

In this paper, we solve problems (i) and (ii) for $\mathfrak{g}=\mathfrak{s p}_{2 m}$ and obtain certain results for orthogonal algebras.

1.2. The general CFT-based approach

In this subsection, we recall how Zhu's algebra and the C_{2}-algebra show up in the context of conformal field theory on the sphere \mathbb{P}^{1}. Our main references are [DFMS] for general CFT-related questions and [BF, K2] for the theory of vertex operator algebras.

Let \mathcal{H} be the vacuum space of states (Fock space) of a given CFT \mathcal{V}. The space \mathcal{H} carries a degree grading with respect to the zeroth Virasoro operator L_{0} :

$$
\mathcal{H}=\bigoplus_{k \geqslant 0} \mathcal{H}(k), \quad L_{0} a=k a \quad \forall a \in \mathcal{H}(k)
$$

For instance, $\mathcal{H}(0)$ is spanned by a vacuum vector $|0\rangle$. In what follows for $a \in \mathcal{H}(k)$ we write $|a|=k$. The field-states correspondence attaches a field (vertex operator) $Y(a, z)$ to each vector $a \in \mathcal{H}$. For a vector $a \in \mathcal{H}(k)$, the modes decomposition of $Y(a, z)$ is given by $Y(a, z)=\sum_{m \in \mathbb{Z}} a_{m} z^{-m-k}$, where a_{m} are degree $-m$ linear operators on \mathcal{H}. Vertex operators $Y(a, z)$ satisfy the OPE, which describes the products $Y(a, z) Y(b, w)$.

Correlation functions (amplitudes) play a very important role in the CFT. An example of these functions is vacuum-to-vacuum correlators

$$
\langle 0| Y\left(a_{1}, z_{1}\right) \cdots Y\left(a_{l}, z_{l}\right)|0\rangle
$$

In [GabGod], the authors suggested an axiomatic formulation of conformal field theories in terms of systems of amplitudes. Let V be a space of quasi-primary states that generate
the theory. To each l-tuple $a_{1}, \ldots, a_{l} \in V$, one can attach a correlation function $\left\langle Y\left(a_{1}, z_{1}\right) \cdots Y\left(a_{l}, z_{l}\right)\right\rangle$. These amplitudes form a system with certain properties and describe the structure of the theory (irreducible highest weight representations, fusion rules, OPE, etc). Therefore, an important task is to construct examples (or even spaces of examples) of systems of correlation functions. These spaces are constructed as follows. To each collection of points $\mathbf{u}=\left(u_{1}, \ldots, u_{k}\right)$, one can attach a space $\mathcal{O}_{\mathbf{u}} \hookrightarrow \mathcal{H}$ such that the dual space $A_{\mathbf{u}}^{*}=\left(\mathcal{H} / \mathcal{O}_{\mathbf{u}}\right)^{*}$ parameterizes the systems of correlation functions satisfying the so-called highest weight condition (depending on \mathbf{u}). The cases $\mathbf{u}=(\infty,-1)$ and $\mathbf{u}=(\infty, \infty)$ are of the special interest. The corresponding spaces $\mathcal{O}_{\mathbf{u}}$ are given by

$$
\begin{aligned}
& \mathcal{O}_{(\infty,-1)}=\operatorname{span}\left\{\operatorname{Res}_{z}\left(Y(a, z) z^{-2}(1+z)^{|a|} b\right), a, b \in \mathcal{H}\right\} \\
& \mathcal{O}_{(\infty, \infty)}=\operatorname{span}\left\{a_{-2} b, a, b \in \mathcal{H}\right\}
\end{aligned}
$$

The spaces $A_{(\infty,-1)}$ and $A_{(\infty, \infty)}$ can be endowed with multiplication and are referred to as Zhu's algebra and the C_{2}-algebra (see [Z]). We give some remarks on their importance below.

One of the most important concepts in the CFT is rationality. A rational theory \mathcal{V} has several finiteness properties: the number of irreducible highest weight representations is finite, the fusion coefficients are finite, the characters are convergent (for $|q|<1$) and are closed under modular transformations. It turns out that the algebras $A(\mathcal{V})=A_{(\infty,-1)}$ and $A_{[2]}(\mathcal{V})=A_{(\infty, \infty)}$ carry crucial information about the rationality and about irreducible representations of \mathcal{V}. Conjecturally, the rationality of \mathcal{V} is characterized by finite-dimensionality and semi-simplicity of $A(\mathcal{V})$. If both properties hold, then irreducible representations of $A(\mathcal{V})$ are in one-to-one correspondence with irreducible highest weight representations of \mathcal{V}. The algebra $A_{[2]}(\mathcal{V})$ is a degeneration of Zhu's algebra. Therefore it can be a priori 'bigger' than $A(\mathcal{V})$. It was shown in $[\mathrm{Z}]$ that the finite dimensionality of \mathcal{V} (the so-called C_{2}-condition) implies that the number of irreducible representations of \mathcal{V} is finite and that the fusion coefficients are finite (note, however, that it does not imply the rationality of \mathcal{V}, see [GK]).

In this paper, we are only concerned with the WZW theories associated with simple Lie algebra \mathfrak{g} and non-negative integer level k. In this case, the vacuum space of states \mathcal{H} is isomorphic to the level k vacuum (with trivial highest weight with respect to $\mathfrak{g} \otimes 1$) representation of the affine Kac-Moody Lie algebra $\widehat{\mathfrak{g}}=\mathfrak{g} \otimes \mathbb{C}\left[t, t^{-1}\right] \oplus \mathbb{C} K$ (see [K1]). The precise description of Zhu's algebra in this case was given in [FZ] (see subsection 1.1 above). We note that the C_{2}-algebra is given by

$$
A_{[2]}(\mathcal{V})=\mathcal{H} / \operatorname{span}\left\{\left(x \otimes t^{-n}\right) v: x \in \mathfrak{g}, v \in \mathcal{H}, n \geqslant 2\right\} .
$$

2. The Lie algebra $\mathfrak{s p}_{4 m}$ and the C_{2}-algebra $A\left(\mathfrak{s p}_{2 m} ; k\right)$

The idea of the following construction is to realize $A_{[2]}\left(\mathfrak{s p}_{2 m} ; k\right)$ as a representation of the much larger algebra $\mathfrak{s p}_{4 m}$, and then use restriction algorithm arguments to prove a graded character formula as well as the equality of the dimensions of the C_{2}-algebra and Zhu's algebra.

2.1. Sympletic algebras: generalities

The enumeration of the fundamental weights is as in [B]. Let $\omega_{1}, \ldots, \omega_{m}$ be the set of fundamental weights for the Lie algebra $\mathfrak{s p}_{2 m}$. The highest root is $\theta=2 \omega_{1}$, and for a dominant integral $\lambda=\sum_{i=1}^{m} a_{i} \omega_{i}$ the condition $(\lambda, \theta) \leqslant k$ reads as $\sum_{i=1}^{m} a_{i} \leqslant k$. Recall that for any dominant weight $\lambda \in P^{+}\left(\mathfrak{s p}_{2 m}\right)$, we have $V(\lambda) \simeq V(\lambda)^{*}$, so theorem 1.1 can be
reformulated as

$$
\begin{equation*}
A\left(\mathfrak{s p}_{2 m} ; k\right) \simeq \bigoplus_{\substack{\lambda=\sum_{i=1}^{m} a_{i} \omega_{i} \\ \sum_{i=1}^{m} a_{i} \leqslant k}} V(\lambda) \otimes V(\lambda) \tag{2.1}
\end{equation*}
$$

Let $\mathfrak{p}_{2 m} \subset \mathfrak{s p}_{4 m}$ be the maximal parabolic Lie subalgebra associated with the fundamental weight $\omega_{2 m}$. We fix a Levi decomposition $\mathfrak{p}_{2 m}=\mathfrak{l} \oplus \mathfrak{n}$ and $\mathfrak{g}=\mathfrak{n}^{-} \oplus \mathfrak{p}_{2 m}$, where $\mathfrak{l} \simeq \mathfrak{g l}_{2 m}$ is the Lie algebra, $\mathfrak{n} \simeq S^{2}\left(\mathbb{C}^{2 m}\right)$ and $\mathfrak{n}^{-} \simeq S^{2}\left(\mathbb{C}^{2 m}\right)^{*}$ as the $\mathfrak{l}=\mathfrak{g l}_{2 m}$-module. The $\mathfrak{g l} l_{2 m}$-representations on \mathfrak{n} and \mathfrak{n}^{-}remain irreducible with respect to the action of the subalgebra $\mathfrak{s p}_{2 m} \subset \mathfrak{g l}_{2 m}$, both representations are isomorphic to the adjoint representation of the symplectic Lie algebra. Summarizing we have

Lemma 2.1. As $\mathfrak{l}=\mathfrak{g l}_{2 m}$-module we have isomorphisms $\mathfrak{n} \simeq S^{2}\left(\mathbb{C}^{2 m}\right)$ and $\mathfrak{n}^{-} \simeq S^{2}\left(\mathbb{C}^{2 m}\right)^{*}$, and as $\mathfrak{s p}_{2 m}$-module we have isomorphisms $\mathfrak{n} \simeq \mathfrak{n}^{-} \simeq \mathfrak{s p}_{2 m}$.

In the following, we always assume that for $\ell \in \mathbb{N}$ the symplectic group $S p_{2 \ell}$ is realized as the group leaving invariant the skew symmetric form on $\mathbb{C}^{2 \ell}$ defined by the $2 \ell \times 2 \ell$-matrix:

$$
J=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & . & 0 & 0 \\
0 & -1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

For an $m \times m$ matrix A, let $A^{n t}$ be the transpose of a matrix with respect to the diagonal given by $i+j=2 m+1$, i.e. for $A=\left(a_{i, j}\right)$ the matrix $A^{n t}=\left(a_{i, j}^{n t}\right)$ is given by $a_{i, j}^{n t}=a_{2 m+1-j, 2 m+1-i}$. The Lie algebra of the symplectic group $S p_{2 m}$ can then be described as the following set of matrices:

$$
\mathfrak{s p}_{2 m}=\left\{\left.\left(\begin{array}{cc}
A & B \\
C & -A^{n t}
\end{array}\right) \right\rvert\, A, B, C \in M_{m}, B=B^{n t}, C=C^{n t}\right\},
$$

with the maximal torus $\mathfrak{t}=\operatorname{diag}\left(t_{1}, \ldots, t_{m},-t_{m} \ldots,-t_{1}\right)$ and the Borel subalgebra being the upper triangular matrices of the form above.

The Lie algebra of the symplectic group $S p_{2 m} \subset G L_{2 m}$ embedded in the Levi subgroup $G L_{2 m} \subset S p_{4 m}$ can be seen as the set of matrices of the following form:

$$
\mathfrak{s p}_{2 m}=\left\{\left.\left(\begin{array}{cccc}
A & B & 0 & 0 \tag{2.2}\\
C & -A^{n t} & 0 & 0 \\
0 & 0 & A & -B \\
0 & 0 & -C & -A^{n t}
\end{array}\right) \right\rvert\, \begin{array}{c}
A, B, C \in M_{m}, \\
B=B^{n t} \\
C=C^{n t}
\end{array}\right\} \subset \mathfrak{s p}_{4 m} .
$$

There is also a maximal reductive sub-Lie algebra of type $\mathrm{C}_{m}+\mathrm{C}_{m}$ sitting inside $\mathfrak{s p}_{4 m}$ in the following way:

$$
\mathfrak{s p}_{2 m} \oplus \mathfrak{s p}_{2 m}=\left\{\left.\left(\begin{array}{cccc}
K & 0 & 0 & L \\
0 & X & Y & 0 \\
0 & Z & -X^{n t} & 0 \\
M & 0 & 0 & -K^{n t}
\end{array}\right) \right\rvert\, \begin{array}{c}
K, L, M, X, Y, Z \in M_{m} \\
L=L^{n t}, M=M^{n t} \\
Y=Y^{n t}, Z=Z^{n t}
\end{array}\right\}
$$

Let \mathbb{I}_{m} denote the $m \times m$ identity matrix and let J^{\prime} be the $2 m \times 2 m$ matrix of the form

$$
J^{\prime}=\left(\begin{array}{cc}
0 & \mathbb{I}_{m} \\
-\mathbb{I}_{m} & 0
\end{array}\right)
$$

Inside the Lie subalgebra $\mathfrak{s p}_{2 m} \oplus \mathfrak{s p}_{2 m}$, we have a diagonally embedded symplectic Lie algebra $\Delta\left(\mathfrak{s p}_{2 m}\right)$, where.

$$
\begin{equation*}
\Delta: \mathfrak{s p}_{2 m} \hookrightarrow \mathfrak{s p}_{2 m} \oplus \mathfrak{s p}_{2 m}, \quad Q \mapsto\left(Q, J^{\prime} Q J^{\prime-1}\right) \tag{2.3}
\end{equation*}
$$

which has the same maximal torus as the embedded symplectic Lie subalgebra $\mathfrak{s p}_{2 m}$ described in (2.2). As a consequence, we see

Lemma 2.2. For a $\mathfrak{s p}_{4 m}$-representation $\mathbb{V}(\lambda)$ let

$$
\operatorname{res}_{\mathfrak{s p}_{2 m}}^{\mathfrak{s p}_{4 m} \mathbb{V}(\lambda)}
$$

be the $\mathfrak{s p}_{2 m}$-module obtained via the embedding in (2.2) and

$$
\operatorname{res}_{\Delta\left(\mathfrak{s p}_{2 m}\right)}^{\mathfrak{s p}_{4 m}} \mathbb{V}(\lambda)
$$

be the $\mathfrak{s p}_{2 m}$-module obtained via the embedding in (2.3). Then

$$
\operatorname{res}_{\mathfrak{s p}_{2 m}}^{\mathfrak{s p}_{4 m}} \mathbb{V}(\lambda) \simeq \operatorname{res}_{\Delta\left(\mathfrak{s p}_{2 m}\right)}^{\mathfrak{s p}_{4 m}} \mathbb{V}(\lambda)
$$

2.2. The Lie algebra $\mathfrak{s p}_{4 m}$ and $A_{[2]}\left(\mathfrak{s p}_{2 m} ; k\right)$

We fix the standard maximal torus (diagonal matrices) and Borel subalgebra (upper triangular matrices) for $\mathfrak{g l}_{2 m}$. Then the maximal torus and Borel subalgebra of $\mathfrak{s p}_{2 m}$ and $\mathfrak{g l}_{2 m}$ are contained in each other. Let θ be the maximal root in the root system of $\mathfrak{s p}_{2 m}$. We identify the module $\mathfrak{s p}_{2 m}$ again with \mathfrak{n}^{-}(lemma 2.1). Fix a highest root vector x_{θ}, then x_{θ} is a highest weight vector for the adjoint action of $\mathfrak{s p}_{2 m}$ as well as for the irreducible action of $\mathfrak{g l}_{2 m}$ on the same representation space. It follows that

$$
\begin{equation*}
x_{\theta}^{k+1} \in S^{\bullet}\left(\mathfrak{s p}_{2 m}\right)=S^{\bullet}\left(S^{2}\left(\mathbb{C}^{2 m}\right)\right)^{*}=S^{\bullet}\left(\mathfrak{n}^{-}\right) \tag{2.4}
\end{equation*}
$$

is a highest weight vector of weight $2(k+1) \omega_{1}$ for the action of the symplectic group $S p_{2 m}$ and of weight $-2(k+1) \epsilon_{2 m}$ for the general linear group $G L_{2 m}$. One can check easily the following connection between x_{θ} and the root vectors for the Lie algebra $\mathfrak{s p}_{4 m}$.

Lemma 2.3. Let $X_{-\alpha_{2 m}} \in \mathfrak{n}^{-} \subset \mathfrak{s p}_{4 m}$ be a root vector for the negative of the simple root $\alpha_{2 m}$ in the root system for the Lie algebra $\mathfrak{s p}_{4 m}$. With respect to the embedding in (2.2), $X_{-\alpha_{2 m}}$ is a weight vector for the Lie algebra $\mathfrak{s p}_{2 m}$ of weight θ and hence can be identified with x_{θ}.

To distinguish between the highest weight representations of the different groups, we write $V(\lambda)$ for the $S p_{2 m}$-representations, $\mathbb{V}(\lambda)$ for the $G L_{2 m}$-representations and $\mathbb{V}(\lambda)$ for the $S p_{4 m}$-representations of highest weight λ (whenever this makes sense).

The irreducible $G L_{2 m}$-module $U\left(\mathfrak{g} l_{2 m}\right) \circ x_{\theta}^{k+1}$ generated by x_{θ}^{k+1} is the module $\mathbb{V}(2(k+$ 1) $\left.\omega_{1}\right)^{*}$, and hence remains irreducible when restricted to $S p_{2 m}$, i.e. we have the following sequence of equalities of vector spaces:

$$
\begin{aligned}
U\left(\mathfrak{g l}_{2 m}\right) \circ x_{\theta}^{k+1} & =U\left(\mathfrak{s p}_{2 m}\right) \circ x_{\theta}^{k+1} \\
& =U\left(\mathfrak{s p}_{2 m}\right) \circ X_{-\alpha_{2 m}}^{k+1} \\
& =U\left(\mathfrak{g l}_{2 m}\right) \circ X_{-\alpha_{2 m}}^{k+1} .
\end{aligned}
$$

Let $\mathbb{V}\left(k \omega_{2 m}\right)$ be the irreducible $S p_{4 m}$-module of highest weight $k \omega_{2 m}$. The nilpotent radical \mathfrak{n} of $\mathfrak{p}_{2 m}$ is Abelian (since $\omega_{2 m}$ is a cominuscule weight, see for example [FFL]). Recall the following isomorphism of \mathfrak{l}-modules (see [FFL], lemma 3.1):

$$
\mathbb{V}\left(k \omega_{2 m}\right) \otimes \mathbb{C}_{-k \omega_{2 m}} \simeq S^{\bullet}\left(\mathfrak{n}^{-}\right) /\left\langle U(\mathfrak{l}) \circ x_{\theta}^{k+1}\right\rangle
$$

where $\langle\cdots\rangle$ denotes the ideal generated by the corresponding subspace. Combining this isomorphism with (2.4), we get as a consequence the following isomorphisms of $G L_{2 m^{-}}$ modules as well as $S p_{2 m}$-modules. In particular, the C_{2}-algebra $A_{[2]}\left(\mathfrak{s p}_{2 m} ; k\right)$ inherits the structure of a $G L_{2 m}$-module.

Lemma 2.4.

$$
\begin{aligned}
\mathbb{V}\left(k \omega_{2 m}\right) \otimes \mathbb{C}_{-k \omega_{2 m}} & \simeq S^{\bullet}\left(\mathfrak{n}^{-}\right) /\left\langle U\left(\mathfrak{g l}_{2 m}\right) \circ X_{-\alpha_{2 m}}^{k+1}\right\rangle \\
& =S^{\bullet}\left(\mathfrak{s p}_{2 m}\right) /\left\langle U\left(\mathfrak{s p}_{2 m}\right) \circ x_{\theta}^{k+1}\right\rangle \\
& \simeq A_{[2]}\left(\mathfrak{s p}_{2 m} ; k\right) .
\end{aligned}
$$

3. The graded character of the \boldsymbol{C}_{2}-algebra for $\mathfrak{s p}_{2 m}$

Let $P_{2 m} \subset S p_{4 m}$ be the parabolic subgroup associated with the fundamental weight $\omega_{2 m}$. By [L1] it is known that the action of the Levi subgroup $L=G L_{2 m} \subset P_{2 m}$ on $S p_{4 m} / P_{2 m}$ is spherical, i.e. a Borel subgroup of L has a dense orbit in $S p_{4 m} / P_{2 m}$. As a consequence, the restriction of an irreducible $S p_{4 m}$-module of highest weight $\ell \omega_{2 m}, \ell \in \mathbb{N}$, to L is multiplicity free. Let ω_{0} denote the trivial character. The tables in [L1] imply

Proposition 3.1. As the $G L_{2 m}$-module, the C_{2}-algebra $A_{[2]}\left(\mathfrak{s p}_{2 m} ; k\right)$ decomposes as

$$
A_{[2]}\left(\mathfrak{s p}_{2 m} ; k\right)=\bigoplus_{\substack{\lambda=2\left(a_{1} \omega_{1}+\ldots+a_{2 m-1} \omega_{2 m-1}\right) \\ a_{1}+\ldots+a_{2 m} \leqslant k}} \mathbb{V}(\lambda) \otimes \mathbb{C}_{2\left(a_{2 m}-k\right) \omega_{2 m}} .
$$

Proof. The lemma above and the decomposition formula in [L1] imply

$$
\begin{aligned}
\left(\operatorname{res}_{G L_{2 m}}^{S p_{4 m}} \mathbb{V}\left(k \omega_{2 m}\right)\right) \otimes \mathbb{C}_{-k \omega_{2 m}} & =\bigoplus_{\substack{\lambda=a_{0} \omega_{0}+a_{1} 2 \omega_{1}+\ldots+a_{2 m} 2 \omega_{2 m} \\
a_{0}+a_{1}+\ldots+a_{2 m}=k}} \mathbb{V}(\lambda) \otimes \mathbb{C}_{-2 k \omega_{2 m}} \\
& =\bigoplus_{\substack{\lambda=2\left(a_{1} \omega_{1}+\ldots+a_{2 m-1} \omega_{2 m-1}\right) \\
a_{1}+\ldots+a_{2 m} \leqslant k}} \mathbb{V}(\lambda) \otimes \mathbb{C}_{2\left(a_{2 m}-k\right) \omega_{2 m}}
\end{aligned}
$$

The center Z of $G L_{2 m}, Z:=\left\{t . \mathbb{I}_{2 m} \mid t \in \mathbb{C}^{*}\right\}$, acts on $\mathfrak{s p}_{2 m}=S^{2}\left(\mathbb{C}^{2 m}\right)^{*}=\mathfrak{n}^{-}$by t^{-2} and hence on $S^{j}\left(\mathfrak{s p}_{2 m}\right)$ by $t^{-2 j}$. For a Young diagram (or a partition) λ the action of the center on a representation $\mathbb{V}(\lambda)$ can be described as follows. The element $t . \mathbb{I}_{2 m} \in Z$ acts as a multiplication by t to the power given by the number of boxes in the diagram. This leads to the following corollary.

Corollary 3.2. The j th graded component of the C_{2}-algebra $A_{[2]}\left(\mathfrak{s p}_{2 m} ; k\right)=$ $\bigoplus_{j \geqslant 0} A_{[2]}^{j}\left(\mathfrak{s p}_{2 m} ; k\right)$ decomposes as $\mathfrak{g}_{2 m}$-module as follows:

$$
A_{[2]}^{j}\left(\mathfrak{s p}_{2 m} ; k\right)=\sum_{\substack{\lambda=2\left(a_{1} \omega_{1}+\ldots+a_{2 m-1} \omega_{2 m-1}\right) \\ a_{1}+\ldots+a_{2 m} \leqslant k \\ a_{1}+2 a_{2}+3 a_{3}+\ldots+(2 m-1) a_{2 m-1}+2 m a_{2 m}+j=2 m k}} \mathbb{V}(\lambda) \otimes \mathbb{C}_{2\left(a_{2 m}-k\right) \omega_{2 m}}
$$

Proof. We know that $t \cdot \mathbb{I}_{2 m} \in Z$ acts on $\mathbb{V}(\lambda) \otimes \mathbb{C}_{2\left(a_{2 m}-k\right) \omega_{2 m}}$ as

$$
t^{2\left(a_{1}+2 a_{2}+\cdots+(2 m-1) a_{2 m-1}\right)} t^{2 m\left(2 a_{2 m}-2 k\right)}
$$

Therefore, the condition

$$
\mathbb{V}(\lambda) \otimes \mathbb{C}_{2\left(a_{2 m}-k\right) \omega_{2 m}} \hookrightarrow A_{[2]}^{j}\left(\mathfrak{s p}_{2 m} ; k\right)
$$

can be reformulated as

$$
a_{1}+2 a_{2}+3 a_{3}+\cdots+(2 m-1) a_{2 m-1}+2 m a_{2 m}+j=2 m k
$$

which proves the corollary.
The corollary provides a first step for a formula for the decomposition of $A_{[2]}^{j}\left(\mathfrak{s p}_{2 m} ; k\right)$ as $\mathfrak{s p}_{2 m}$-module. To deduce from the above a graded character formula, recall the following restriction rule due to Littlewood [Lw], respectively, its generalization by Koike and Terada [KT]. In the $G L_{2 m}$ and $S p_{2 m}$ settings, it is often convenient to use at the same time the language of partitions as well as the language of highest weights. By the abuse of notation we denote for a dominant weight $\lambda=\sum_{i=1}^{2 m} a_{i} \omega_{i}$ by $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ also the associated partition given by the rule
$\lambda_{1}=\sum_{i=1}^{2 m} a_{i}, \quad \lambda_{2}=\sum_{i=2}^{2 m} a_{i}, \quad \ldots, \quad \lambda_{2 m-1}=a_{2 m-1}+a_{2 m}, \quad \lambda_{2 m}=a_{2 m}$.
For three such partitions λ, μ, ν we denote by $N_{\mu, \nu}^{\lambda}$ the associated Littlewood-Richardson coefficient, i.e. for a tensor product of $G L_{2 m}$-representations, $N_{\mu, \nu}^{\lambda}$ is the multiplicity of $\mathbb{V}(\lambda)$ in the tensor product $\mathbb{V}(\mu) \otimes \mathbb{V}(\nu)$.

Note that for a partition λ with more than m parts a representation $V(\lambda)$ for the symplectic group $S p_{2 m}$ is not defined. In [KT], section 2.4, one finds an algorithm (folding of Young diagrams) which associates with a partition λ a partition $\pi(\lambda)$ with less than or equal to m parts, and a sign which we denote by $\operatorname{sign}(\lambda)$. For such a partition, Koike and Terada define as the character associated with this partition $\operatorname{char} V(\lambda):=\operatorname{sign}(\lambda) \operatorname{char} V(\pi(\lambda))$. If λ has less than or equal to m parts, then the sign is plus and $\pi(\lambda)=\lambda$.

Theorem 3.3 ([KT]). Suppose that λ is a partition having at most $2 m$ positive parts. Then

$$
\operatorname{char}\left(\operatorname{res}_{S_{22 m}}^{G L_{2 m}} \mathbb{V}(\lambda)\right)=\sum_{\mu} \sum_{(2 v)^{t}} N_{\mu,(2 v)^{2}}^{\lambda} \operatorname{char} V(\mu)
$$

where the sum is over all non-negative integer partitions μ and v, and $(2 v)^{t}$ denotes the transpose of the partition $2 v$.

As a consequence we get the following.
Theorem 3.4. The j th graded component of the C_{2}-algebra $A_{[2]}\left(\mathfrak{s p}_{2 m} ; k\right)=$ $\bigoplus_{j \geqslant 0} A_{[2]}^{j}\left(\mathfrak{s p}_{2 m} ; k\right)$ decomposes as the $S p_{2 m}$-module as follows:

$$
\begin{aligned}
\operatorname{char} A_{[2]}^{j}\left(\mathfrak{s p}_{2 m} ; k\right)= & \sum_{\substack{\lambda=2\left(a_{1} \omega_{1}+\ldots+a_{2 m-1} \omega_{2 m-1}\right) \\
a_{1}+\ldots+a_{2 m} \leq k \\
a_{1}+2 a_{2}+3 a_{3} \\
a_{1}+2 a_{2}+\ldots+2 m a_{3}+\ldots+2 m k}} \operatorname{char}\left(\operatorname{res}_{S p_{2 m}}^{G L_{2 m}} \mathbb{V}(\lambda)\right) \\
& \sum_{\substack{\lambda=2\left(a_{1} \omega_{1}+\ldots+a_{2 m-1} \omega_{2 m-1}\right) \\
a_{1}+\ldots+a_{2 m} \leq k \\
a_{1}+2 a_{2}+3 a_{3}+\ldots+2 m a_{2 m}+j=2 m k}} \sum_{\mu} N_{(2 \nu)^{t}} N_{\mu,(2 v)^{t}}^{\lambda} \operatorname{char} V(\mu) .
\end{aligned}
$$

4. Comparing dimensions in type $\boldsymbol{C}_{\boldsymbol{m}}$

Theorem 4.1. The C_{2}-algebra $A_{[2]}\left(\mathfrak{s p}_{2 m} ; k\right)$ and Zhu's algebra $A\left(\mathfrak{s p}_{2 m} ; k\right)$ have the same dimension.

Proof. The proof is divided into several steps.
Step 1. We transform the problem into a restriction problem for another group. By lemma 2.4, we have an isomorphism of $S p_{2 m}$-modules:

$$
A_{[2]}\left(\mathfrak{s p}_{2 m} ; k\right) \simeq \operatorname{res}_{S p_{2 m}}^{S p_{4 m}} \mathbb{V}\left(k \omega_{2 m}\right)
$$

where the embedding $S p_{2 m} \hookrightarrow S p_{4 m}$ is given by (2.2). By lemma 2.2, we know that

$$
\operatorname{res}_{\mathfrak{s p}_{2 m}}^{\mathfrak{s p}_{4 m}} \mathbb{V}\left(k \omega_{2 m}\right) \simeq \operatorname{res}_{\Delta\left(\mathfrak{s p}_{2 m}\right)}^{\mathfrak{s p}_{4 m}} \mathbb{V}\left(k \omega_{2 m}\right)
$$

where the second embedding was described in (2.3). This second embedding has the advantage that by restricting the representation first to the maximal semisimple Lie subalgebra $\mathfrak{s p}_{2 m} \oplus \mathfrak{s p}_{2 m}$, we get already a description of $\mathbb{V}\left(k \omega_{2 m}\right)$ as a sum of tensor products of $\mathfrak{s p}_{2 m^{-}}$ modules, which will simplify the comparison with the decomposition of the Zhu algebra in theorem 1.1.
Step 2. It remains to determine the $S p_{2 m} \times S p_{2 m}$ structure of the representation $\operatorname{res}_{S_{p_{2 m} \times S} p_{p_{2 m}}} \mathbb{V}\left(k \omega_{2 m}\right)$. We use geometric methods. Let $P_{2 m} \subset S p_{4 m}$ be the maximal parabolic subgroup associated with the weight $\omega_{2 m}$ and set $Y=S p_{4 m} / P_{2 m} \subset \mathbb{P}\left(\mathbb{V}\left(\omega_{2 m}\right)\right)$. We denote by $\widehat{Y} \subset \mathbb{V}\left(\omega_{2 m}\right)$ the affine cone over the projective variety.

The group $S p_{4 m}$ acts on the affine variety \widehat{Y} and hence on its coordinate ring $\mathbb{C}[\widehat{Y}]$. As $S p_{4 m}$-module, this ring is the direct sum:

$$
\mathbb{C}[\widehat{Y}]=\bigoplus_{\ell \geqslant 0} \mathbb{V}\left(\ell \omega_{2 m}\right)
$$

The ring $\mathbb{C}[\widehat{Y}]$ is naturally graded with $\mathbb{V}\left(\ell \omega_{2 m}\right)$ as ℓ th graded component.
Let $U \subset G=S p_{2 m} \times S p_{2 m}$ be the unipotent radical of a Borel subgroup. In a representation of G the U-fixed vectors are sums of highest weight vectors. The ring $\mathbb{C}[\widehat{Y}]^{U}$ of U-invariant vectors completely determines the structure of $\mathbb{C}[\widehat{Y}]$ as G-representation.

Proposition 4.2. The ring of U-invariant functions

$$
\mathbb{C}[\widehat{Y}]^{U}=\bigoplus_{k \geqslant 0} \mathbb{V}\left(k \omega_{2 m}\right)^{U}
$$

is a polynomial ring generated by its degree 1 elements of weight $\omega_{i} \otimes \omega_{i}$ for $i=0, \ldots, m$, where ω_{0} denotes the trivial weight.

The proof will be given in step 4. As an immediate consequence, we get

Corollary 4.3.

$$
\left(\operatorname{res}_{S p_{2 m} \times S p_{2 m}}^{S p_{4 m}} \mathbb{\mathbb { V }}\left(k \omega_{2 m}\right)\right)=\bigoplus_{\substack{\lambda=\sum_{i=1}^{m}=1 a_{i} \omega_{i} \\ \sum a_{i} \leqslant k}} V(\lambda) \otimes V(\lambda)
$$

Step 3. Proof of theorem 4.1. The theorem follows now from corollary 4.3 together with lemma 2.4, theorem 1.1 and (2.1).

Step 4. It remains to prove proposition 4.2. The first step in this direction is as follows.
Proposition 4.4. The action of $G=S p_{2 m} \times S p_{2 m}$ on $Y=S p_{4 m} / P_{2 m}$ is spherical, i.e. a Borel subgroup of G has a dense orbit in Y.

Proof. We use the local structure theorem [BLV], which states the following.
Let G be a connected complex reductive algebraic group. Suppose Y is a normal G-variety and $y \in Y$ is such that the stabilizer G_{y} of y is a parabolic subgroup of G, i.e. the orbit $G \cdot y$ is a
projective variety. Let Q be a parabolic subgroup opposite to G_{y}. Denote by Q^{u} the unipotent radical of Q and set $L:=G_{y} \cap Q$.

Theorem 4.5 ([BLV]). There exists a locally closed, affine subvariety Z of Y such that Z contains y and is stable under the action of $L, Q^{u} . Z$ is open in Y, and the canonical map $Q^{u} \times Z \rightarrow Q^{u} \cdot Z$ is an isomorphism of varieties.

In our situation, we have $Y=S p_{4 m} / P_{2 m}, y=\overline{1}$ is the class of the identity, G_{y} is $R=P_{m} \times P_{m}$, where $P_{m} \subset S p_{2 m}$ is the maximal parabolic associated with the fundamental weight ω_{m}. Let Q be the opposite parabolic subgroup, then $L=R \cap Q=G L_{m} \times G L_{m}$.

Denote by Q^{u} the unipotent radical of Q and let

$$
O=G . \overline{1} \simeq\left(S p_{2 m} \times S p_{2 m}\right) /\left(P_{m} \times P_{m}\right)=G / R
$$

be the closed orbit in Y. If we apply the local structure theorem to this situation, then we may assume that Z is smooth since Y is smooth. Moreover, the action of G on Y is spherical if the action of L on Z is spherical. Consider the normal bundle \mathcal{N} of O in X with fiber N at the coset $\overline{1}$ of the identity in G / R. Then N is isomorphic (as L-module) to the tangent space $T_{y} Z$ of the L-fixed point y. It follows now by Luna's slice theorem that the action of L on Z is spherical if and only if the action on N is spherical. Now as the representation of $L=G L_{m} \times G L_{m}$ we have that $N=\mathbb{C}^{m} \otimes \mathbb{C}^{m}$, which is a spherical action.

Let \widehat{Y} be the affine cone over Y. Since the coordinate ring $\mathbb{C}[\widehat{Y}]$ of the affine cone over $Y=S p_{4 m} / P_{2 m}$ is a unique factorization ring, it follows (see for example [L1], lemma 1)
Corollary 4.6. The ring of U-invariant functions:

$$
\mathbb{C}[\widehat{Y}]^{U}=\bigoplus_{\ell \geqslant 0} \mathbb{V}\left(\ell \omega_{2 m}\right)^{U}
$$

is a polynomial ring.
Step 5. To finish the proof of proposition 4.2, we have to show that the generators of $\mathbb{C}[\widehat{Y}]^{U}$ are of degree 1 and have the desired weights.

To calculate the $S p_{2 m} \times S p_{2 m}$ character, recall that (see for example [FH], theorem 17.5)

$$
\begin{equation*}
\operatorname{char} \mathbb{V}\left(\omega_{2 m}\right)=\operatorname{char} \Lambda^{2 m}\left(\mathbb{C}^{2 m} \oplus \mathbb{C}^{2 m}\right)-\operatorname{char} \Lambda^{2 m-2}\left(\mathbb{C}^{2 m} \oplus \mathbb{C}^{2 m}\right) \tag{4.1}
\end{equation*}
$$

More generally, for all $p=1, \ldots, 2 m$ one has

$$
\begin{equation*}
\operatorname{char} \mathbb{V}\left(\omega_{p}\right)=\operatorname{char} \Lambda^{p}\left(\mathbb{C}^{2 m} \oplus \mathbb{C}^{2 m}\right)-\operatorname{char} \Lambda^{p-2}\left(\mathbb{C}^{2 m} \oplus \mathbb{C}^{2 m}\right) \tag{4.2}
\end{equation*}
$$

Using (4.1) and (4.2), one easily verifies that, as $S p_{2 m} \times S p_{2 m}$ module, we have
$\mathbb{V}\left(\omega_{2 m}\right)=\mathbb{C} \oplus V\left(\omega_{1}\right) \otimes V\left(\omega_{1}\right) \oplus V\left(\omega_{2}\right) \otimes V\left(\omega_{2}\right) \oplus \cdots \oplus V\left(\omega_{m}\right) \otimes V\left(\omega_{m}\right)$.
Let $f_{0}, \ldots, f_{m} \in \mathbb{V}\left(\omega_{2 m}\right)$ be the highest weight vectors for the $S p_{2 m} \times S p_{2 m}$-action, where f_{0} is a $S p_{2 m} \times S p_{2 m}$ invariant function and f_{i} is of weight $\omega_{i} \otimes \omega_{i}$ for $i \geqslant 1$. Since $\mathbb{C}[\widehat{Y}]^{U}$ is a polynomial ring, the grading and weights imply that these elements are algebraically independent. In addition, if these elements do not generate the ring, then necessarily the Krull dimension $\operatorname{dim} \mathbb{C}[\widehat{Y}]^{U}>m+1$. So proposition 4.2 is a consequence of the following lemma.
Lemma 4.7. The Krull dimension $\operatorname{dim} \mathbb{C}[\widehat{Y}]^{U}=m+1$.
Proof. Since $\mathbb{C}[\widehat{Y}]$ is a UFD, U is connected and has no non-trivial characters, $\mathbb{C}(\widehat{Y})^{U}$ is the quotient field of $\mathbb{C}[\widehat{Y}]^{U}$. By Rosenlicht's theorem $[\mathrm{R}]$, generic orbits of an arbitrary action of a linear algebraic group on an irreducible algebraic variety are separated by rational invariants, which implies in our case that $\operatorname{trdeg} \mathbb{C}(\widehat{Y})^{U}=\operatorname{dim} \widehat{Y}-\operatorname{dim}$ (generic orbit).

The maximal unipotent subgroup of $G L_{m} \times G L_{m}$ acts freely on an open subset of $\mathbb{C}^{m} \otimes \mathbb{C}^{m}$, so the local structure theorem (step 4) shows that U operates freely on an open subset of Y and hence does so on \widehat{Y}. Since the co-dimension of a generic U-orbit in \widehat{Y} is $m+1$, this finishes the proof of the lemma and hence of proposition 4.2.

5. The orthogonal case

In this section, we consider the case of orthogonal algebras $\mathfrak{s o}_{2 m}$ and $\mathfrak{s o}_{2 m+1}$. Our goal is to answer questions (i) and (ii) from section 1. Unfortunately, at the moment we are not able to answer these questions completely. The reason is that the C_{2}-algebra $A_{[2]}\left(\mathfrak{s o}_{n} ; k\right)$ is bigger than the representation $V\left(k \omega_{n}\right)$ of $\mathfrak{s o}_{2 n}$. Therefore, we can control only a certain quotient of the C_{2}-algebra. The details are given below.

5.1. Even orthogonal case: the setup

For the enumeration of fundamental weights we use the same notation as in [B]. Let $\omega_{1}, \ldots, \omega_{m}$ be the set of fundamental weights of $\mathfrak{s o}_{2 m}$. The highest root is $\theta=\omega_{2}$, and for $\lambda=\sum_{i=1}^{m} a_{i} \omega_{i}$ the condition $(\lambda, \theta) \leqslant k$ can be reformulated as

$$
a_{1}+\sum_{i=2}^{m-2} 2 a_{i}+a_{m-1}+a_{m} \leqslant k .
$$

We also note that for even m all representations are self-dual and for odd m spin representations are dual to each other $V\left(\omega_{m-1}\right)^{*} \simeq V\left(\omega_{m}\right)$. Thus, theorem 1.1 for $\mathfrak{g}=\mathfrak{s o}_{2 m}$ can be reformulated as

$$
A\left(\mathfrak{s o}_{2 m} ; k\right) \simeq \bigoplus_{\substack{\lambda=\sum_{i=1}^{m} a_{i} \omega_{i} \\ a_{1}+\sum_{i=2}^{m=2} 2 a_{i}+a_{m-1}+a_{m} \leqslant k}} V_{\lambda} \otimes V_{\lambda}^{*}
$$

where $V(\lambda)^{*}=V(\lambda)$ for even m and

$$
V\left(\sum_{i=1}^{m} a_{i} \omega_{i}\right)^{*}=V\left(\sum_{i=1}^{m-2} a_{i} \omega_{i}+a_{m-1} \omega_{m}+a_{m} \omega_{m-1}\right)
$$

for odd m.
Let $\mathfrak{p}_{2 m} \subset \mathfrak{s o}_{4 m}$ be the maximal parabolic Lie subalgebra associated with the fundamental weight $\omega_{2 m}$. We fix a Levi decomposition $\mathfrak{p}_{2 m}=\mathfrak{l} \oplus \mathfrak{n}$ and $\mathfrak{g}=\mathfrak{p}_{2 m} \oplus \mathfrak{n}^{-}$, where $\mathfrak{l} \simeq \mathfrak{g l}_{2 m}$ as the Lie algebra and $\mathfrak{n} \simeq \Lambda^{2}\left(\mathbb{C}^{2 m}\right)$, respectively, $\mathfrak{n}^{-} \simeq \Lambda^{2}\left(\mathbb{C}^{2 m}\right)^{*}$ as $\mathfrak{l}=\mathfrak{g l} l_{2 m}$-module. The restriction of the $\mathfrak{g l}_{2 m}$-representation on \mathfrak{n} (respectively \mathfrak{n}^{-}) to the subalgebra $\mathfrak{s o}_{2 m} \subset \mathfrak{g l}_{2 m}$ remains irreducible; it is the adjoint representation of the orthogonal Lie algebra. Summarizing we have

Lemma 5.1. As $\mathfrak{g l}_{2 m}$-module we have isomorphisms $\mathfrak{n} \simeq \Lambda^{2}\left(\mathbb{C}^{2 m}\right), \mathfrak{n}^{-} \simeq \Lambda^{2}\left(\mathbb{C}^{2 m}\right)^{*}$, and as $\mathfrak{s o}_{2 m}$-module we have isomorphisms $\mathfrak{n} \simeq \mathfrak{n}^{-} \simeq \mathfrak{s o}_{2 m}$.

In the following, we always assume that for $\ell \in \mathbb{N}$ the orthogonal group $S O_{2 \ell}$ is defined to be the group leaving invariant the symmetric form on $\mathbb{C}^{2 \ell}$ defined by the $2 \ell \times 2 \ell$ matrix:

$$
J=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & . . & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0
\end{array}\right) .
$$

For an $m \times m$ matrix A let $A^{n t}$ be the transpose as in section 2. The Lie algebra of the orthogonal group $\mathrm{SO}_{2 m}$ can then be described as the following set of matrices:

$$
\mathfrak{s o}_{2 m}=\left\{\left.\left(\begin{array}{cc}
A & B \\
C & -A^{n t}
\end{array}\right) \right\rvert\, A, B, C \in M_{m}, B=-B^{n t}, C=-C^{n t}\right\}
$$

with the maximal torus $\mathfrak{t}=\operatorname{diag}\left(t_{1}, \ldots, t_{m},-t_{m} \ldots,-t_{1}\right)$ and the Borel subalgebra being the upper triangular matrices of the form above.

The Lie algebra of the orthogonal group $S O_{2 m} \subset G L_{2 m}$ embedded in the Levi subgroup $G L_{2 m} \subset S O_{4 m}$ can be seen as the set of matrices of the following form:

$$
\mathfrak{s o}_{2 m}=\left\{\left.\left(\begin{array}{cccc}
A & B & 0 & 0 \tag{5.1}\\
C & -A^{n t} & 0 & 0 \\
0 & 0 & A & B \\
0 & 0 & C & -A^{n t}
\end{array}\right) \right\rvert\, \begin{array}{c}
A, B, C \in M_{m}, \\
B=-B^{n t} \\
C=-C^{n t}
\end{array}\right\} \subset \mathfrak{s o}_{4 m}
$$

There is also a maximal reductive sub-Lie algebra of type $D_{m}+D_{m}$ sitting inside $\mathfrak{s o}_{4 m}$ in the following way:
$\mathfrak{s o}_{2 m} \oplus \mathfrak{s o}_{2 m}=\left\{\left.\left(\begin{array}{cccc}K & 0 & 0 & L \\ 0 & X & Y & 0 \\ 0 & Z & -X^{n t} & 0 \\ M & 0 & 0 & -K^{n t}\end{array}\right) \right\rvert\, \begin{array}{c}K, L, M, X, Y, Z \in M_{m} \\ L=-L^{n t}, M=-M^{n t} \\ Y=-Y^{n t}, Z=-Z^{n t}\end{array}\right\}$.
Let \mathbb{I}_{m} denote the $m \times m$ identity matrix and let J^{\prime} be the $2 m \times 2 m$ matrix of the form

$$
J^{\prime}=\left(\begin{array}{cc}
0 & \mathbb{I}_{m} \\
\mathbb{I}_{m} & 0
\end{array}\right)
$$

Inside the Lie subalgebra $\mathfrak{s o}_{2 m} \oplus \mathfrak{5 o}_{2 m}$ we have a diagonally embedded orthogonal Lie algebra $\Delta\left(\mathfrak{5 O}_{2 m}\right)$, where

$$
\begin{equation*}
\Delta: \mathfrak{s o}_{2 m} \hookrightarrow \mathfrak{s o}_{2 m} \oplus \mathfrak{s o}_{2 m}, \quad Q \mapsto\left(Q, J^{\prime} Q J^{\prime-1}\right) \tag{5.2}
\end{equation*}
$$

which has the same maximal torus as the embedded orthogonal Lie subalgebra $\mathfrak{s o}_{2 m}$ described in (5.1). As a consequence, we see
 obtained via the embedding in (5.1) and denote by

$$
\operatorname{res}_{\Delta\left(\mathfrak{s o}_{2 m}\right)}^{\mathfrak{s o}_{4 m}} \mathbb{V}(\lambda)
$$

the $\mathfrak{s o}_{2 m}$-representation obtained via the embedding in (5.2).
Then $\operatorname{res}_{\mathbf{S o}_{2 m}}^{\mathfrak{S o}_{4 m} \mathbb{V}(\lambda) \simeq \operatorname{res}_{\Delta\left(\mathfrak{s o}_{2 m}\right)}^{\mathfrak{S o}_{4 m}} \mathbb{V}(\lambda) . ~ ~}$

5.2. The Lie algebra $\mathfrak{s o}_{4 m}$ and a quotient of $A_{[2]}\left(\mathfrak{s o}_{2 m} ; k\right)$

We fix the standard maximal torus (diagonal matrices) and Borel subalgebra (upper triangular matrices) for $\mathfrak{g l} l_{2 m}$; then the maximal torus and the Borel subalgebra of $\mathfrak{s o}_{2 m}$ and $\mathfrak{g l}_{2 m}$ are contained in each other. Let θ be the maximal root in the root system of $\mathfrak{s o}_{2 m}$, we identify the module $\mathfrak{s o}_{2 m}$ again with \mathfrak{n}^{-}(lemma 5.1). Fix a highest root vector x_{θ}, then x_{θ} is a highest weight vector for the adjoint action of $\mathfrak{s o}_{2 m}$ as well as for the irreducible action of $\mathfrak{g l}_{2 m}$ on the same representation space. It follows that

$$
\begin{equation*}
x_{\theta}^{k+1} \in S^{\bullet}\left(\mathfrak{s o}_{2 m}\right)=S^{\bullet}\left(\Lambda^{2}\left(\mathbb{C}^{2 m}\right)\right)^{*}=S^{\bullet}(\mathfrak{n}) \tag{5.3}
\end{equation*}
$$

is a highest weight vector of weight $(k+1) \omega_{2}$ for the action of the orthogonal group $\mathrm{SO}_{2 m}$ and of weight $-(k+1)\left(\epsilon_{2 m-1}+\epsilon_{2 m}\right)$ for the general linear group $G L_{2 m}$. One can check easily the following connection between x_{θ} and the root vectors for the Lie algebra $\mathfrak{s o}_{4 m}$.

Lemma 5.3. Let $X_{-\alpha_{2 m}} \in \mathfrak{n} \subset \mathfrak{s o}_{4 m}$ be a root vector for the negative of the simple root $\alpha_{2 m}$ of the root system of $\mathfrak{s o}_{4 m}$. With respect to the embedding in (5.1), $X_{-\alpha_{2 m}}$ is a weight vector for the Lie algebra $\mathfrak{s o}_{2 m}$ of weight θ.

To distinguish between the highest weight representations of the different groups, we write $V(\lambda)$ for the $\mathfrak{s o}_{2 m}$-representations, $\mathbb{V}(\lambda)$ for the $\mathfrak{g l}_{2 m}$-representations and $\mathbb{V}(\lambda)$ for the $\mathfrak{s o}_{4 m}$-representations of highest weight λ (whenever this makes sense).

The irreducible $\mathfrak{g l} 2_{2 m}$-module $U\left(\mathfrak{g l}_{2 m}\right) \circ x_{\theta}^{k+1}$ generated by x_{θ}^{k+1} is of weight $-(k+1)\left(\epsilon_{2 m-1}+\right.$ $\epsilon_{2 m}$), and hence does not remain irreducible when restricted to $\mathfrak{s o}_{2 m}$, i.e. we have the following sequence of inclusions of vector spaces:
$U\left(\mathfrak{g l}_{2 m}\right) \circ X_{-\alpha_{2 m}}^{k+1}=U\left(\mathfrak{g l}_{2 m}\right) \circ x_{\theta}^{k+1} \supset U\left(\mathfrak{s o}_{2 m}\right) \circ x_{\theta}^{k+1}=U\left(\mathfrak{s o}_{2 m}\right) \circ X_{-\alpha_{2 m}}^{k+1}$.
Let $\mathbb{V}\left(k \omega_{2 m}\right)$ be the irreducible $\operatorname{Spin}_{4 m}$-module of highest weight $k \omega_{2 m}$. The nilpotent radical \mathfrak{n} of $\mathfrak{p}_{2 m}$ is Abelian (since $\omega_{2 m}$ is a cominuscule weight, see for example [FFL]). Recall the following isomorphism of \mathfrak{l}-modules (see [FFL], lemma 3.1):

$$
\mathbb{V}\left(k \omega_{2 m}\right) \otimes \mathbb{C}_{-k \omega_{2 m}} \simeq S^{\bullet}\left(\mathfrak{n}^{-}\right) /\left\langle U(\mathfrak{l}) \circ x_{\theta}^{k+1}\right\rangle
$$

where $\langle\cdots\rangle$ denotes the ideal generated by the corresponding subspace. Combining this isomorphism with (5.4), we get as a consequence the following morphisms of $\mathfrak{g l}_{2 m}$-modules respectively $\mathfrak{s o}_{2 m}$-modules. In particular, we obtain a quotient of the C_{2}-algebra $A_{[2]}\left(\mathfrak{s o}_{2 m} ; k\right)$ as a $\mathfrak{5 o}_{4 m}$-representation:

Lemma 5.4.

$$
\begin{aligned}
A_{[2]}\left(\mathfrak{s o}_{2 m} ; k\right) & =S^{\bullet}\left(\mathfrak{s o}_{2 m}\right) /\left\langle U\left(\mathfrak{s o}_{2 m}\right) \circ x_{\theta}^{k+1}\right\rangle \\
& \rightarrow S^{\bullet}\left(\Lambda^{2} \mathbb{C}^{2 m}\right)^{*} /\left\langle U\left(\mathfrak{g l}_{2 m}\right) \circ x_{\theta}^{k+1}\right\rangle \\
& =S^{\bullet}\left(\mathfrak{n}^{-}\right) /\left\langle U\left(\mathfrak{g l}_{2 m}\right) \circ X_{\alpha_{2 m}}^{k+1}\right\rangle \\
& \simeq \mathbb{V}\left(k \omega_{2 m}\right) \otimes \mathbb{C}_{-k \omega_{2 m}} .
\end{aligned}
$$

Remark 5.5. Of course, one can use the representation $\mathbb{V}\left(k \omega_{2 m-1}\right)$ instead of $\mathbb{V}\left(k \omega_{2 m}\right)$. It turns out that in order to compare Zhu's algebra and the C_{2}-algebra of type D_{m} one has to use the first representation for odd m and the second one for even m. We work out in details the even m case. The odd case is considered in subsection 5.4.

5.3. The $\mathfrak{s o}_{2 m} \times \mathfrak{s o}_{2 m}$-decomposition of $\mathbb{V}\left(k \omega_{2 m}\right)$

In the following, we investigate the decomposition of $\mathbb{V}\left(k \omega_{2 m}\right)$ as $\mathfrak{s o}_{2 m}$-module. By lemma 5.2 it suffices to describe the $\mathfrak{s o}_{2 m} \times \mathfrak{s o}_{2 m}$-module structure.

We proceed as in the symplectic case and use geometric methods: let $P_{2 m} \subset \operatorname{Spin}_{4 m}$ be the maximal parabolic subgroup associated with the weight $\omega_{2 m}$ and set $Y=\operatorname{Spin}_{4 m} / P_{2 m} \subset$ $\mathbb{P}\left(\mathbb{V}\left(k \omega_{2 m}\right)\right)$. We denote by $\widehat{Y} \subset \mathbb{V}\left(k \omega_{2 m}\right)$ the affine cone over the projective variety.

The group $\operatorname{Spin}_{4 m}$ acts on the affine variety \widehat{Y} and hence on its coordinate ring $\mathbb{C}[\widehat{Y}]$. As $\mathrm{Spin}_{4 m}$-module, this ring is the direct sum:

$$
\mathbb{C}[\widehat{Y}]=\bigoplus_{\ell \geqslant 0} \mathbb{V}\left(\ell \omega_{2 m}\right)
$$

The ring $\mathbb{C}[\widehat{Y}]$ is naturally graded with $\mathbb{V}\left(\ell \omega_{2 m}\right)$ as ℓ th graded component. Let $U \subset G=$ $\operatorname{Spin}_{2 m} \times \operatorname{Spin}_{2 m}$ be the unipotent radical of a Borel subgroup.

Proposition 5.6. The ring of U-invariant functions

$$
\mathbb{C}[\widehat{Y}]^{U}=\bigoplus_{k \geqslant 0} \mathbb{V}\left(k \omega_{2 m}\right)^{U}
$$

is a polynomial ring generated by its degree 1 elements of weight $\omega_{m} \otimes \omega_{m}$ and $\omega_{m-1} \otimes \omega_{m-1}$ and the degree 2 elements $\omega_{i} \otimes \omega_{i}$ for $i=0, \ldots, m-2$, where ω_{0} denotes the trivial weight.

As an immediate consequence, we get

Corollary 5.7.

$$
\operatorname{res}_{\mathrm{Spin}_{2 m} \times \operatorname{Spin}_{2 m}}^{\mathrm{Spin}_{4 m}} \mathbb{W}\left(k \omega_{2 m}\right)=\bigoplus_{\substack{\lambda=\sum_{i=1}^{m} a_{i} \omega_{i} \\\left(\sum_{i=1}^{m-2} 2 a_{i}\right)+a_{m-1}+a_{m} \leqslant k \\ k-a_{m-1}-a_{m} \equiv 0 \\(\bmod 2)}} V(\lambda) \otimes V(\lambda) .
$$

It remains to prove proposition 5.6. A first step in this direction is the following.
Proposition 5.8. The action of $G=\operatorname{Spin}_{2 m} \times \operatorname{Spin}_{2 m}$ on $Y=\operatorname{Spin}_{4 m} / P_{2 m}$ is spherical, i.e. a Borel subgroup of G has a dense orbit in Y.

Proof. As before we use the local structure theorem [BLV]. In our situation, we have $Y=\operatorname{Spin}_{4 m} / P_{m}, y=\overline{1}$ is the class of the identity, G_{y} is $R=P_{m} \times P_{m}$, where $P_{m} \subset \operatorname{Spin}_{2 m}$ is the maximal parabolic associated with the fundamental weight ω_{m}. Let Q be the opposite parabolic subgroup, then $\mathfrak{l}=\mathfrak{g l}_{m} \times \mathfrak{g l}_{m}$.

Denote by Q^{u} the unipotent radical of Q and let

$$
O=G . \overline{1} \simeq\left(\operatorname{Spin}_{2 m} \times \operatorname{Spin}_{2 m}\right) /\left(P_{m} \times P_{m}\right)=G / R
$$

be the closed orbit in Y. If we apply the local structure theorem to this situation, then we may assume that Z is smooth since Y is smooth. Moreover, the action of G on Y is spherical if the action of L on Z is spherical. Consider the normal bundle \mathcal{N} of O in X with fiber N at the coset $\overline{1}$ of the identity in G / R. Then N is isomorphic (as L-module) to the tangent space $T_{y} Z$ of the L-fixed point y. It follows now by Luna's slice theorem that the action of L on Z is spherical if and only if the action on N is spherical. Now as representation for the Lie algebra $\mathfrak{l}=\mathfrak{g l}_{m} \oplus \mathfrak{g l}_{m}$, we get the action on $N=\mathbb{C}^{m} \otimes \mathbb{C}^{m}$, which is a spherical action.

Let \widehat{Y} be the affine cone over Y. Since the coordinate ring $\mathbb{C}[\widehat{Y}]$ of the affine cone over $Y=\operatorname{Spin}_{4 m} / P_{2 m}$ is a unique factorization ring, it follows

Corollary 5.9. The ring of U-invariant functions

$$
\mathbb{C}[\widehat{Y}]^{U}=\bigoplus_{\ell \geqslant 0} \mathbb{V}\left(\ell \omega_{2 m}\right)^{U}
$$

is a polynomial ring.
Proof of proposition 5.6. To finish the proof of proposition 5.6 we have to show that the generators of $\mathbb{C}[\widehat{Y}]^{U}$ are of the desired degrees and weights.

To calculate the $\mathfrak{s o}_{2 m} \oplus \mathfrak{s o}_{2 m}$ character, recall that (see for example [FH], theorem 19.2) for the $\mathrm{Spin}_{4 m}$-modules, we have

$$
\Lambda^{2 m} \mathbb{C}^{4 m}=\Lambda^{2 m}\left(\mathbb{C}^{2 m} \oplus \mathbb{C}^{2 m}\right)=\mathbb{V}\left(2 \omega_{2 m}\right) \oplus \mathbb{V}\left(2 \omega_{2 m-1}\right)
$$

Using the decomposition $\mathbb{C}^{4 m}=\left(\mathbb{C}^{2 m} \oplus \mathbb{C}^{2 m}\right)$, with this description one verifies easily that, as $\mathfrak{s o}_{2 m} \oplus \mathfrak{5 o}_{2 m}$-module, we have

$$
\begin{aligned}
\operatorname{res}_{\mathfrak{S o} 2 m^{\mathfrak{s o s o s o}} \mathbf{s o}_{2 m}}^{\mathbb{V}}\left(2 \omega_{2 m}\right)= & \mathbb{C} \oplus V\left(\omega_{1}\right) \otimes V\left(\omega_{1}\right) \oplus \cdots \oplus V\left(\omega_{m-2}\right) \otimes V\left(\omega_{m-2}\right) \\
& \oplus V\left(\omega_{m-1}+\omega_{m}\right) \otimes V\left(\omega_{m-1}+\omega_{m}\right) \\
& \oplus V\left(2 \omega_{m-1}\right) \otimes V\left(2 \omega_{m-1}\right) \oplus V\left(2 \omega_{m}\right) \otimes V\left(2 \omega_{m}\right) .
\end{aligned}
$$

For the fundamental representation, one computes

Let $f_{0}, \ldots, f_{m} \in \mathbb{V}\left(\omega_{2 m}\right) \oplus \mathbb{V}\left(2 \omega_{2 m}\right)$ be the highest weight vectors for the $\mathfrak{s o}_{2 m} \oplus \mathfrak{s o}_{2 m}$ action, where f_{0} is a $\mathfrak{s o}_{2 m} \oplus \mathfrak{s o}_{2 m}$-invariant function of degree $2, f_{1}, \ldots, f_{m-2}$ are of weight $\omega_{i} \otimes \omega_{i}$ for $i=1, \ldots, m-2$ and of degree 2 , and f_{m-1}, f_{m} are of degree 1 and of weight $\omega_{m-1} \otimes \omega_{m-1}$ and $\omega_{m} \otimes \omega_{m}$, respectively.

The collection of functions $f_{0}, \ldots, f_{m}, f_{m-1}^{2}, f_{m-1} f_{m}, f_{m}^{2}$ is a basis for the subspace of the highest weight vectors in $\mathbb{V}\left(\omega_{2 m}\right) \oplus \mathbb{V}\left(2 \omega_{2 m}\right)$.

Since $\mathbb{C}[\widehat{Y}]^{U}$ is a polynomial ring, the grading and the weights imply that the elements f_{0}, \ldots, f_{m} are algebraically independent. In addition, if these elements do not generate the ring, then necessarily $\operatorname{dim} \mathbb{C}[\widehat{Y}]^{U}>m+1$. So proposition 5.6 is a consequence of the following lemma, which is proved along the same lines as lemma 4.7.

Lemma 5.10. $\operatorname{dim} \mathbb{C}[\widehat{Y}]^{U}=m+1$.

5.4. The dual realization

Recall that for odd m not all representations of $\mathfrak{s o}_{2 m}$ are self-dual. Therefore, corollary 5.7 does not allow us to compare Zhu's algebras and the C_{2}-algebras. In fact, to handle this problem, we consider the weight $\omega_{2 m-1}$ of $\mathfrak{5 0}_{4 m}$ (instead of $\omega_{2 m}$). This weight is also cominuscule and thus everything works for $\omega_{2 m-1}$ as well. Below we formulate the analogs of proposition 5.6 and corollary 5.7.

Fix an odd m. Let $P_{2 m-1} \subset \operatorname{Spin}_{4 m}$ be the maximal parabolic subgroup associated with the weight $\omega_{2 m-1}$ and set $Y^{\prime}=\operatorname{Spin}_{4 m} / P_{2 m-1} \subset \mathbb{P}\left(\mathbb{V}\left(k \omega_{2 m-1}\right)\right)$. We denote by $\widehat{Y}^{\prime} \subset \mathbb{V}\left(k \omega_{2 m-1}\right)$ the affine cone over the projective variety.

Proposition 5.11. The ring of U-invariant functions

$$
\mathbb{C}\left[\widehat{Y}^{\prime}\right]^{U}=\bigoplus_{k \geqslant 0} \mathbb{V}\left(k \omega_{2 m-1}\right)^{U}
$$

is a polynomial ring generated by its degree 1 elements of weight $\omega_{m} \otimes \omega_{m-1}$ and $\omega_{m-1} \otimes \omega_{m}$ and the degree 2 elements $\omega_{i} \otimes \omega_{i}$ for $i=0, \ldots, m-2$, where ω_{0} denotes the trivial weight.

As an immediate consequence, we get

Corollary 5.12.

$$
\operatorname{res}_{\operatorname{Spin}_{2 m} \times \operatorname{Spin}_{2 m} \mathbb{W}\left(k \omega_{2 m-1}\right)=}^{\overbrace{\substack{\lambda=\sum_{i=1}^{m} a_{i} \omega_{i} \\\left(\sum_{i=1}^{m-2} 2 a_{i}\right)+a_{m-1}+a_{m} \leqslant k \\ k-a_{m-1}-a_{m} \equiv 0 \quad(\bmod 2)}} V V(\lambda) \otimes V(\lambda)^{*} . .}
$$

5.5. Comparison

Summarizing, we obtain the following.
Proposition 5.13. We have an isomorphism of $\mathfrak{s o}_{2 m}$ modules

$$
S^{\bullet}\left(\mathfrak{s o}_{2 m}\right) /\left\langle U\left(\mathfrak{g l}_{2 m}\right) \circ e_{\theta}^{k+1}\right\rangle \simeq \underset{\substack{\lambda=\sum_{i=1}^{m} a_{i} \omega_{i} \\\left(\sum_{i=1}^{m-2} 2 a_{i}\right)+a_{m-1}+a_{m} \leqslant k \\ k-a_{m-1}-a_{m} \equiv 0(\bmod 2)}}{ } V V(\lambda) \otimes V(\lambda)^{*}
$$

providing a surjection of $A_{[2]}\left(\mathfrak{5 o}_{2 m} ; k\right)$ to the righthand side of (5.5).

5.6. The odd orthogonal case

In this subsection, we consider the case $\mathfrak{g}=\mathfrak{5 o}_{2 m+1}$. All the constructions as above are valid in this case as well, so we only formulate the final result in the following proposition.

Proposition 5.14. There exists a surjection of $\mathfrak{s o}_{2 m+1}$ modules:

Acknowledgments

We are grateful to Terry Gannon for useful correspondence. The work of EF was partially supported by the Russian President grant MK-281.2009.1, the RFBR grants 09-01-00058, 07-02-00799 and NSh-3472.2008.2, by Pierre Deligne fund based on his 2004 Balzan prize in mathematics and by Alexander von Humboldt Fellowship. The work of Peter Littelmann was partially supported by the priority program SPP 1377 of the German Science Foundation.

References

[ABD] Abe T, Buhl G and Dong C 2004 Rationality, regularity, and C_{2}-cofiniteness Trans. Am. Math. Soc. 356 3391-402
[BF] Ben-Zvi D and Frenkel E 2001 Vertex algebras and algebraic curves Mathematical Surveys and Monographs vol 88 (Providence, RI: American Mathematical Society)
[B] Bourbaki N 1968 (Paris: Hermann) Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitres IV, V, VI Actualités Scientifiques et Industrielles no. 1337
[BLV] Brion M, Luna D and Vust T 1986 Espace homogènes sphériques Invent. Math. 84 617-32
[CF] Carqueville N and Flohr M 2005 Nonmeromorphic operator product expansion and C_{2}-cofiniteness for a family of W-algebras arXiv:math-ph/0508015
[DFMS] Di Francesco P, Mathieu P and Sénéchal D 1996 Conformal Field Theory (Graduate Texts in Contemporary Physics) (Berlin: Springer)
[DM] Dong C and Mason G 2006 Integrability of C_{2}-cofinite vertex operator algebras arXiv:math/0601569
[F] Feigin E 2009 The PBW filtration Represent. Theory 13 165-81
[FFL] Feigin B, Feigin E and Littelmann P 2009 Zhu's algebras, C_{2}-algebras and abelian radicals arXiv:0907.3962
[FH] Fulton W and Harris J 1991 Representation Theory (Graduate Texts in Mathematics) (New York: Springer)
[FZ] Frenkel I and Zhu Y 1992 Vertex operator algebras associated to representations of affine and Virasoro algebras Duke Math. J. 66 123-68
[GG] Gaberdiel M R and Gannon T 2008 Zhu's algebra, the C_{2} algebra, and twisted modules arXiv:0811.3892
[GabGod] Gaberdiel M R and Goddard P 2000 Axiomatic conformal field theory Commun. Math. Phys. 209 549-94
[GK] Gaberdiel M R and Kausch H G 1996 A rational logarithmic conformal field theory Phys. Lett. B 386 131-7
[GN] Gaberdiel M R and Neitzke A 2003 Rationality, quasirationality and finite W-algebras Commun. Math. Phys. 238 305-31
[K1] Kac V 1990 Infinite Dimensional Lie Algebras 3rd edn (Cambridge: Cambridge University Press)
[K2] Kac V 1998 Vertex algebras for beginners 2nd edn University Lecture Ser. 10 (Providence, RI: AMS)
[K3] Kac V 1980 Some remarks on nilpotent orbits J. Algebra 64 190-213
[KT] Koike K and Terada I 1987 Young-diagrammatic methods for the representation theory of the classical groups of type $\mathrm{B}_{n}, \mathrm{C}_{n}, \mathrm{D}_{n}$ J. Algebra 107 466-511
[Li] Li H 1999 Some finiteness properties of regular vertex operator algebras J. Algebra 212 495-514
[L1] Littelmann P 1994 On spherical double cones J. Algebra 166 142-57
[Lw] Littlewood D E 1940 The Theory of Group Characters and Matrix Representations of Groups (New York: Oxford University Press)
[M1] Miyamoto M 2004 Modular invariance of vertex operator algebras satisfying C_{2}-cofinitness Duke Math. J. 122 51-91
[M2] Miyamoto M 2003 A theory of tensor products for vertex operator algebra satisfying C_{2}-cofiniteness arXiv:math.QA/0309350
[N] Neitzke A 2000 Zhu's theorem and an algebraic characterization of chiral blocks arXiv:hepth/0005144
[R] Rosenlicht M 1963 A remark on quotient spaces An. Acad. Brasil. Ciêinc. 35 487-9
[Z] Zhu Y 1996 Modular invariance of characters of vertex operator algebras J. Am. Math. Soc. 9 237-302

