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E-mail: evgfeig@gmail.com and littelma@math.uni-koeln.de

Received 18 November 2009, in final form 13 January 2010
Published 12 March 2010
Online at stacks.iop.org/JPhysA/43/135206

Abstract
We prove that Zhu’s algebra and the C2-algebra of type Cm have the same
dimension, and we compute the graded character of the latter. Maximal
parabolic subalgebras of the symplectic algebra play a central role in our
construction. For the orthogonal algebras our methods do not allow us to
describe the whole C2-algebras; we get only a description of a certain quotient
of the algebra.

PACS numbers: 02.20.Sv, 02.20.Tw

Introduction

In this paper, we continue the study of Zhu’s algebras and C2-algebras of WZW models,
initiated in [FFL]. We briefly recall the setup.

The theory of vertex operator algebras (VOAs) plays a key role in the mathematical
description of the structures arising in the conformal field theories (see [BF, GabGod, K2]).
In particular spaces of states, partition functions and amplitudes can be described via the
structure theory of vertex operator algebras and their representation theory.

The representation theory of a vertex operator algebra V is, in general, very complicated.
But in some special cases (so-called rational VOAs) it is controlled by a certain finite-
dimensional semisimple associative algebra A(V), called Zhu’s algebra (see [FZ, Z]).
More precisely, irreducible representations of A(V) are in one-to-one correspondence with
irreducible representations of V . Zhu’s algebra can be explicitly computed in some special
cases (for example for minimal models and WZW models). In this paper, we only deal with
the WZW models associated with a simple Lie algebra g on the non-negative integer level k.
The corresponding Zhu’s algebra (denoted by A(g; k)) is given by (see [FZ])

A(g; k) = U(g)
/〈

ek+1
θ

〉
,
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where θ denotes the highest root, eθ ∈ g is a corresponding root vector and
〈
ek+1
θ

〉
is the

two-sided ideal in the universal enveloping algebra of g generated by ek+1
θ .

As mentioned above, the rationality is a very important characterization of a VOA. There
exists a condition (called the C2-cofiniteness condition, see [CF, M1, M2, Z]) which guaranties
the rationality. Namely, the C2-algebra A[2](V) attached toV is defined as a quotient ofV by the
linear span of the elements of the form anb, n � −2, with a, b ∈ V and an being Fourier modes
of the field corresponding to a. The C2-cofiniteness condition reads as dim A[2](V) < ∞. The
algebras A(V) and A[2](V) are very closely related (see [GG, GabGod, GN, N]). For WZW
models, one has

A[2](g; k) = S•(g)
/〈

U(g) ◦ ek+1
θ

〉
,

where S•(g) denotes the symmetric algebra of g, ‘◦’ denotes the action of g on S•(g)

induced by the adjoint action, U(g) ◦ ek+1
θ ⊂ S•(g) is the (irreducible) g-module generated by

ek+1
θ ∈ Sk+1(g), and

〈
U(g) ◦ ek+1

θ

〉
is the ideal generated by this subspace.

It turned out that in several cases Zhu’s algebra and the C2-algebra have the same dimension
(see [FFL, GG]). We note, however, that in general A[2](V) can be viewed as a degeneration
of A(V) and thus may be bigger (this happens for example in the case of the WZW model
of type E8 with k = 1). We also note that the C2-algebra has an extra grading missing in
Zhu’s algebra. For example, for A[2](g; k) this grading is inherited from the degree grading
on S•(g). It is therefore natural to ask for the graded dimension (or graded character) of the
C2-algebra.

In [GG], Gaberdiel and Gannon conjectured an explicit formula for the graded character
of A[2](g; k) for g = sln. They also conjectured that for all n and k one has dim A(sln; k) =
dim A[2](sln; k). These conjectures were proved in [FFL]. In general, we have the following
conjecture.

Conjecture 0.1. For all classical Lie algebras and all k � 0, one has

dim A(g; k) = dim A[2](g; k).

In this paper we prove the conjecture for g of type C (g = sp2m) and compute the graded
character of A[2](sp2m; k).

Our main idea is to identify the C2-algebra A[2](sp2m; k) with the irreducible representation
VV(kω2m) of the bigger algebra sp4m. We then use the geometry of the affine cone over the flag
variety Sp4m/P2m and the restriction formulas by Littlewood, Koike and Terada [KT, Lw] to
prove the graded character formula. Here P2m ⊂ Sp4m is the parabolic subgroup associated
with the fundamental weight ω2m.

Unfortunately, our methods do not generalize to the orthogonal Lie algebras. The C2-
algebra A[2](son; k) turns out to be bigger than the corresponding representation of so2n and,
therefore, we can only describe a quotient of the C2-algebra. We still show that this quotient
(as a g-module) can be very naturally identified with a certain subspace of Zhu’s algebra.

We close the introduction with the following remark. In [GabGod] (see also [GG, GN]),
a new approach to confromal field theories, based on the spaces of correlation functions
(amplitudes), is developed. These spaces can be defined in terms of quotients of spaces of
states attached to a given conformal field theory (CFT). For instance, Zhu’s algebras and the
C2-algebras are particular cases of these quotients. In general, the task to describe the spaces
of correlation functions is very complicated. However, we hope that for WZW theories our
approach, based on the algebra-geometric constructions from the representation theory of
simple Lie algebras, can be useful.
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The paper is organized as follows. In section 1, we recall the definitions of Zhu’s
algebra and the C2-algebra and formulate the problem. In sections 2–4, we work out the
case of the symplectic algebra sp2m. In section 2, we describe the connection between
the C2-algebra A[2](sp2m; k) and certain representations of sp4m. In section 3, we compute
the graded character of A[2](sp2m; k). In section 4, we prove conjecture 0.1 in type Cm. Finally,
in section 5, we discuss the case of the orthogonal algebras.

1. Zhu’s algebra and the C2-algebra

1.1. Definitions

Let g be a simple Lie algebra. Let θ be the highest root of g and eθ ∈ g be a highest weight
vector in the adjoint representation. Fix a non-negative integer k. Let P +

k (g) be the set of
level k integrable g weights, i.e. the set of dominant integral g weights λ satisfying (λ, θ) � k

(the Killing form has been normalized by the usual condition (θ, θ) = 2). The following
theorem 1.1 is proved in [FZ].

Theorem 1.1. The level k Zhu algebra A(g; k) is the quotient of the universal enveloping
algebra U(g) by the two-sided ideal generated by ek+1

θ :

A(g; k) = U(g)
/〈

ek+1
θ

〉
.

In addition, one has an isomorphism of g-modules:

A(g; k) �
⊕

λ∈P +
k (g)

V (λ) ⊗ V (λ)∗.

The form of the description of A(g; k) arises ultimately because of the Peter–Weyl
theorem.

Notation 1.2. Let S(g) = ⊕∞
m=0 Sm(g) be the symmetric algebra of g. For v ∈ Sm(g)

and a ∈ g, let av ∈ Sm+1(g) be the product in the symmetric algebra. Each homogeneous
summand Sm(g) is a g-module by the adjoint action on g. For v ∈ Sm(g) and a ∈ g, we denote
by a ◦ v ∈ Sm(g) the adjoint action of a.

The C2-algebra associated with V(g; k) can be described as follows. The level k C2-
algebra A[2](g; k) is the quotient of the symmetric algebra S(g) by the ideal generated by the
subspace Vk+1 = U(g) ◦ ek+1

θ ↪→ Sk+1(g):

A[2](g; k) = S(g)/〈Vk+1〉.

Remark 1.3. The subspace Vk+1 ↪→ Sk+1(g) is isomorphic to the irreducible g-module
V ((k + 1)θ) of highest weight (k + 1)θ . The algebra A[2](g; k) is naturally a g-module, the
module structure being induced by the adjoint action. Note that A[2](g; k) is not a g⊕ g-
module, differently from A(g; k).

Consider the standard filtration F• on the universal enveloping algebra U(g), such that
gr•F � S(g). Let F•(k) be the induced filtration on the quotient algebra A(g; k). We have an
obvious surjection

A[2](g; k) → gr•F(k). (1.1)

Therefore, we have a surjective homomorphism of g-modules

A[2](g; k) → A(g; k) (1.2)

3
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and thus dim A[2](g; k) �
∑

β∈P +
k (g)(dim Vβ)2. A natural question is: when does this inequality

turn into an equality? In this paper, we are also interested in the degree grading on A[2](g; k)

and in the corresponding graded decomposition into the direct sum of g-modules. Let

S(g) =
⊕
m�0

Sm(g)

be the degree of decomposition of the symmetric algebra. This decomposition induces the
decomposition of the C2-algebra:

A[2](g; k) =
⊕
m�0

Am
[2](g; k). (1.3)

Each space Am
[2](g; k) is naturally a representation of g. Our main questions are as follows.

(i) Prove the equality of the dimensions of A[2](g; k) and A(g; k).
(ii) Find the decomposition of Am

[2](g; k) into the direct sum of irreducible g-modules.

Recall that the case g = sln was considered in [GG] and [FFL]. To be more precise, it
was conjectured in [GG] and proved in [FFL] that

dim A[2](sln; k) = dim A(sln; k)

and, as sln-modules (not as sln ⊕ sln-modules, despite the description as tensor products), one
has a decomposition

Am
[2](k) =

⊕
λ: k�λ1,λn�0
λ1+···+λn=m

V (λ) ⊗ V (λ)∗⊕
λ: k−1�λ1,λn�0
λ1+···+λn=m−1

V (λ) ⊗ V (λ)∗
,

where the gln-module V (λ) is regarded as sln-module with highest weight (λ1 − λn, . . . ,

λn−1 − λn).
In this paper, we solve problems (i) and (ii) for g = sp2m and obtain certain results for

orthogonal algebras.

1.2. The general CFT-based approach

In this subsection, we recall how Zhu’s algebra and the C2-algebra show up in the context
of conformal field theory on the sphere P

1. Our main references are [DFMS] for general
CFT-related questions and [BF, K2] for the theory of vertex operator algebras.

Let H be the vacuum space of states (Fock space) of a given CFT V . The space H carries
a degree grading with respect to the zeroth Virasoro operator L0:

H =
⊕
k�0

H(k), L0a = ka ∀a ∈ H(k).

For instance, H(0) is spanned by a vacuum vector |0〉. In what follows for a ∈ H(k) we
write |a| = k. The field-states correspondence attaches a field (vertex operator) Y (a, z) to
each vector a ∈ H. For a vector a ∈ H(k), the modes decomposition of Y (a, z) is given by
Y (a, z) = ∑

m∈Z
amz−m−k , where am are degree −m linear operators on H. Vertex operators

Y (a, z) satisfy the OPE, which describes the products Y (a, z)Y (b,w).
Correlation functions (amplitudes) play a very important role in the CFT. An example of

these functions is vacuum-to-vacuum correlators

〈0|Y (a1, z1) · · · Y (al, zl)|0〉.
In [GabGod], the authors suggested an axiomatic formulation of conformal field theories
in terms of systems of amplitudes. Let V be a space of quasi-primary states that generate
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the theory. To each l-tuple a1, . . . , al ∈ V , one can attach a correlation function
〈Y (a1, z1) · · · Y (al, zl)〉. These amplitudes form a system with certain properties and describe
the structure of the theory (irreducible highest weight representations, fusion rules, OPE, etc).
Therefore, an important task is to construct examples (or even spaces of examples) of systems
of correlation functions. These spaces are constructed as follows. To each collection of points
u = (u1, . . . , uk), one can attach a space Ou ↪→ H such that the dual space Au

∗ = (H/Ou)∗

parameterizes the systems of correlation functions satisfying the so-called highest weight
condition (depending on u). The cases u = (∞,−1) and u = (∞,∞) are of the special
interest. The corresponding spaces Ou are given by

O(∞,−1) = span{Resz(Y (a, z)z−2(1 + z)|a|b), a, b ∈ H},
O(∞,∞) = span{a−2b, a, b ∈ H}.

The spaces A(∞,−1) and A(∞,∞) can be endowed with multiplication and are referred to as
Zhu’s algebra and the C2-algebra (see [Z]). We give some remarks on their importance below.

One of the most important concepts in the CFT is rationality. A rational theory V has
several finiteness properties: the number of irreducible highest weight representations is finite,
the fusion coefficients are finite, the characters are convergent (for |q| < 1) and are closed under
modular transformations. It turns out that the algebras A(V) = A(∞,−1) and A[2](V) = A(∞,∞)

carry crucial information about the rationality and about irreducible representations of V .
Conjecturally, the rationality ofV is characterized by finite-dimensionality and semi-simplicity
of A(V). If both properties hold, then irreducible representations of A(V) are in one-to-one
correspondence with irreducible highest weight representations of V . The algebra A[2](V) is a
degeneration of Zhu’s algebra. Therefore it can be a priori ‘bigger’ than A(V). It was shown
in [Z] that the finite dimensionality of V (the so-called C2-condition) implies that the number
of irreducible representations of V is finite and that the fusion coefficients are finite (note,
however, that it does not imply the rationality of V , see [GK]).

In this paper, we are only concerned with the WZW theories associated with simple
Lie algebra g and non-negative integer level k. In this case, the vacuum space of states
H is isomorphic to the level k vacuum (with trivial highest weight with respect to g ⊗ 1)
representation of the affine Kac–Moody Lie algebra ĝ = g ⊗ C[t, t−1] ⊕ CK (see [K1]). The
precise description of Zhu’s algebra in this case was given in [FZ] (see subsection 1.1 above).
We note that the C2-algebra is given by

A[2](V) = H/span{(x ⊗ t−n)v : x ∈ g, v ∈ H, n � 2}.

2. The Lie algebra sp4m and the C2-algebra A(sp2m; k)

The idea of the following construction is to realize A[2](sp2m; k) as a representation of the much
larger algebra sp4m, and then use restriction algorithm arguments to prove a graded character
formula as well as the equality of the dimensions of the C2-algebra and Zhu’s algebra.

2.1. Sympletic algebras: generalities

The enumeration of the fundamental weights is as in [B]. Let ω1, . . . , ωm be the set of
fundamental weights for the Lie algebra sp2m. The highest root is θ = 2ω1, and for a
dominant integral λ = ∑m

i=1 aiωi the condition (λ, θ) � k reads as
∑m

i=1 ai � k. Recall
that for any dominant weight λ ∈ P +(sp2m), we have V (λ) � V (λ)∗, so theorem 1.1 can be

5
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reformulated as

A(sp2m; k) �
⊕

λ=∑m
i=1 aiωi∑m

i=1 ai�k

V (λ) ⊗ V (λ). (2.1)

Let p2m ⊂ sp4m be the maximal parabolic Lie subalgebra associated with the fundamental
weight ω2m. We fix a Levi decomposition p2m = l ⊕ n and g = n− ⊕ p2m, where
l � gl2m is the Lie algebra, n � S2(C2m) and n− � S2(C2m)∗ as the l = gl2m-module.
The gl2m-representations on n and n− remain irreducible with respect to the action of the
subalgebra sp2m ⊂ gl2m, both representations are isomorphic to the adjoint representation of
the symplectic Lie algebra. Summarizing we have

Lemma 2.1. As l = gl2m-module we have isomorphisms n � S2(C2m) and n− � S2(C2m)∗,
and as sp2m-module we have isomorphisms n � n− � sp2m.

In the following, we always assume that for � ∈ N the symplectic group Sp2� is realized
as the group leaving invariant the skew symmetric form on C

2� defined by the 2�× 2�-matrix:

J =

⎛⎜⎜⎜⎜⎝
0 0 0 0 1
0 0 0 1 0
0 0 . · · 0 0
0 −1 0 0 0

−1 0 0 0 0

⎞⎟⎟⎟⎟⎠ .

For an m × m matrix A, let Ant be the transpose of a matrix with respect to the diagonal given
by i + j = 2m+1, i.e. for A = (ai,j ) the matrix Ant = (

ant
i,j

)
is given by ant

i,j = a2m+1−j,2m+1−i .
The Lie algebra of the symplectic group Sp2m can then be described as the following set of
matrices:

sp2m =
{(

A B

C −Ant

) ∣∣∣∣A,B,C ∈ Mm,B = Bnt , C = Cnt

}
,

with the maximal torus t = diag(t1, . . . , tm,−tm . . . ,−t1) and the Borel subalgebra being the
upper triangular matrices of the form above.

The Lie algebra of the symplectic group Sp2m ⊂ GL2m embedded in the Levi subgroup
GL2m ⊂ Sp4m can be seen as the set of matrices of the following form:

sp2m =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

A B 0 0
C −Ant 0 0
0 0 A −B

0 0 −C −Ant

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣
A,B,C ∈ Mm,

B = Bnt

C = Cnt

⎫⎪⎪⎬⎪⎪⎭ ⊂ sp4m. (2.2)

There is also a maximal reductive sub-Lie algebra of type Cm + Cm sitting inside sp4m in the
following way:

sp2m ⊕ sp2m =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

K 0 0 L

0 X Y 0
0 Z −Xnt 0
M 0 0 −Knt

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣
K,L,M,X, Y,Z ∈ Mm

L = Lnt ,M = Mnt

Y = Ynt , Z = Znt

⎫⎪⎪⎬⎪⎪⎭ .

Let Im denote the m × m identity matrix and let J ′ be the 2m × 2m matrix of the form

J ′ =
(

0 Im

−Im 0

)
.
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Inside the Lie subalgebra sp2m ⊕sp2m, we have a diagonally embedded symplectic Lie algebra
�(sp2m), where.

� : sp2m ↪→ sp2m ⊕ sp2m, Q �→ (Q, J ′QJ ′−1
), (2.3)

which has the same maximal torus as the embedded symplectic Lie subalgebra sp2m described
in (2.2). As a consequence, we see

Lemma 2.2. For a sp4m-representation VV(λ) let

ressp4m

sp2m
VV(λ)

be the sp2m-module obtained via the embedding in (2.2) and

ressp4m

�(sp2m)VV(λ)

be the sp2m-module obtained via the embedding in (2.3). Then

ressp4m

sp2m
VV(λ) � ressp4m

�(sp2m)VV(λ).

2.2. The Lie algebra sp4m and A[2](sp2m; k)

We fix the standard maximal torus (diagonal matrices) and Borel subalgebra (upper triangular
matrices) for gl2m. Then the maximal torus and Borel subalgebra of sp2m and gl2m are
contained in each other. Let θ be the maximal root in the root system of sp2m. We identify
the module sp2m again with n− (lemma 2.1). Fix a highest root vector xθ , then xθ is a highest
weight vector for the adjoint action of sp2m as well as for the irreducible action of gl2m on the
same representation space. It follows that

xk+1
θ ∈ S•(sp2m) = S•(S2(C2m))∗ = S•(n−) (2.4)

is a highest weight vector of weight 2(k + 1)ω1 for the action of the symplectic group Sp2m

and of weight −2(k + 1)ε2m for the general linear group GL2m. One can check easily the
following connection between xθ and the root vectors for the Lie algebra sp4m.

Lemma 2.3. Let X−α2m
∈ n− ⊂ sp4m be a root vector for the negative of the simple root α2m

in the root system for the Lie algebra sp4m. With respect to the embedding in (2.2), X−α2m
is a

weight vector for the Lie algebra sp2m of weight θ and hence can be identified with xθ .

To distinguish between the highest weight representations of the different groups, we
write V (λ) for the Sp2m-representations, V(λ) for the GL2m-representations and VV(λ) for the
Sp4m-representations of highest weight λ (whenever this makes sense).

The irreducible GL2m-module U(gl2m) ◦ xk+1
θ generated by xk+1

θ is the module V(2(k +
1)ω1)

∗, and hence remains irreducible when restricted to Sp2m, i.e. we have the following
sequence of equalities of vector spaces:

U(gl2m) ◦ xk+1
θ = U(sp2m) ◦ xk+1

θ

= U(sp2m) ◦ Xk+1
−α2m

= U(gl2m) ◦ Xk+1
−α2m

.

Let VV(kω2m) be the irreducible Sp4m-module of highest weight kω2m. The nilpotent radical
n of p2m is Abelian (since ω2m is a cominuscule weight, see for example [FFL]). Recall the
following isomorphism of l-modules (see [FFL], lemma 3.1):

VV(kω2m) ⊗ C−kω2m
� S•(n−)

/〈
U(l) ◦ xk+1

θ

〉
,

7
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where 〈· · ·〉 denotes the ideal generated by the corresponding subspace. Combining this
isomorphism with (2.4), we get as a consequence the following isomorphisms of GL2m-
modules as well as Sp2m-modules. In particular, the C2-algebra A[2](sp2m; k) inherits the
structure of a GL2m-module.

Lemma 2.4.

VV(kω2m) ⊗ C−kω2m
� S•(n−)

/〈
U(gl2m) ◦ Xk+1

−α2m

〉
= S•(sp2m)

/〈
U(sp2m) ◦ xk+1

θ

〉
� A[2](sp2m; k).

3. The graded character of the C2-algebra for sp2m

Let P2m ⊂ Sp4m be the parabolic subgroup associated with the fundamental weight ω2m. By
[L1] it is known that the action of the Levi subgroup L = GL2m ⊂ P2m on Sp4m/P2m is
spherical, i.e. a Borel subgroup of L has a dense orbit in Sp4m/P2m. As a consequence, the
restriction of an irreducible Sp4m-module of highest weight �ω2m, � ∈ N, to L is multiplicity
free. Let ω0 denote the trivial character. The tables in [L1] imply

Proposition 3.1. As the GL2m-module, the C2-algebra A[2](sp2m; k) decomposes as

A[2](sp2m; k) =
⊕

λ=2(a1ω1+...+a2m−1ω2m−1)
a1+...+a2m�k

V(λ) ⊗ C2(a2m−k)ω2m.

Proof. The lemma above and the decomposition formula in [L1] imply(
resSp4m

GL2m
VV(kω2m)

) ⊗ C−kω2m
=

⊕
λ=a0ω0+a12ω1+...+a2m2ω2m

a0+a1+...+a2m=k

V(λ) ⊗ C−2kω2m

=
⊕

λ=2(a1ω1+...+a2m−1ω2m−1)
a1+...+a2m�k

V(λ) ⊗ C2(a2m−k)ω2m
.

�

The center Z of GL2m, Z := {t.I2m | t ∈ C
∗}, acts on sp2m = S2(C2m)∗ = n− by t−2

and hence on Sj (sp2m) by t−2j . For a Young diagram (or a partition) λ the action of the
center on a representation V(λ) can be described as follows. The element t. I2m ∈ Z acts as
a multiplication by t to the power given by the number of boxes in the diagram. This leads to
the following corollary.

Corollary 3.2. The j th graded component of the C2-algebra A[2](sp2m; k) =⊕
j�0 A

j

[2](sp2m; k) decomposes as gl2m-module as follows:

A
j

[2](sp2m; k) =
∑

λ=2(a1ω1+...+a2m−1ω2m−1)
a1+...+a2m�k

a1+2a2+3a3+...+(2m−1)a2m−1+2ma2m+j=2mk

V(λ) ⊗ C2(a2m−k)ω2m
.

Proof. We know that t.I2m ∈ Z acts on V(λ) ⊗ C2(a2m−k)ω2m
as

t2(a1+2a2+···+(2m−1)a2m−1)t2m(2a2m−2k).

Therefore, the condition

V(λ) ⊗ C2(a2m−k)ω2m
↪→ A

j

[2](sp2m; k)

8
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can be reformulated as

a1 + 2a2 + 3a3 + · · · + (2m − 1)a2m−1 + 2ma2m + j = 2mk,

which proves the corollary. �

The corollary provides a first step for a formula for the decomposition of A
j

[2](sp2m; k)

as sp2m-module. To deduce from the above a graded character formula, recall the following
restriction rule due to Littlewood [Lw], respectively, its generalization by Koike and Terada
[KT]. In the GL2m and Sp2m settings, it is often convenient to use at the same time the
language of partitions as well as the language of highest weights. By the abuse of notation we
denote for a dominant weight λ = ∑2m

i=1 aiωi by λ = (λ1, λ2, . . .) also the associated partition
given by the rule

λ1 =
2m∑
i=1

ai, λ2 =
2m∑
i=2

ai, . . . , λ2m−1 = a2m−1 + a2m, λ2m = a2m.

For three such partitions λ,μ, ν we denote by Nλ
μ,ν the associated Littlewood–Richardson

coefficient, i.e. for a tensor product of GL2m-representations, Nλ
μ,ν is the multiplicity of V(λ)

in the tensor product V(μ) ⊗ V(ν).
Note that for a partition λ with more than m parts a representation V (λ) for the symplectic

group Sp2m is not defined. In [KT], section 2.4, one finds an algorithm (folding of Young
diagrams) which associates with a partition λ a partition π(λ) with less than or equal to m
parts, and a sign which we denote by sign(λ). For such a partition, Koike and Terada define
as the character associated with this partition charV (λ) := sign(λ)charV (π(λ)). If λ has less
than or equal to m parts, then the sign is plus and π(λ) = λ.

Theorem 3.3 ([KT]). Suppose that λ is a partition having at most 2m positive parts. Then

char
(
resGL2m

Sp2m
V(λ)

) =
∑

μ

∑
(2ν)t

Nλ
μ,(2ν)t charV (μ),

where the sum is over all non-negative integer partitions μ and ν, and (2ν)t denotes the
transpose of the partition 2ν.

As a consequence we get the following.

Theorem 3.4. The j th graded component of the C2-algebra A[2](sp2m; k) =⊕
j�0 A

j

[2](sp2m; k) decomposes as the Sp2m-module as follows:

charAj

[2](sp2m; k) =
∑

λ=2(a1ω1+...+a2m−1ω2m−1)
a1+...+a2m�k

a1+2a2+3a3+...+2ma2m+j=2mk

char
(
resGL2m

Sp2m
V(λ)

)

=
∑

λ=2(a1ω1+...+a2m−1ω2m−1)
a1+...+a2m�k

a1+2a2+3a3+...+2ma2m+j=2mk

∑
μ

∑
(2ν)t

Nλ
μ,(2ν)t charV (μ).

4. Comparing dimensions in type Cm

Theorem 4.1. The C2-algebra A[2](sp2m; k) and Zhu’s algebra A(sp2m; k) have the same
dimension.

9
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Proof. The proof is divided into several steps.

Step 1. We transform the problem into a restriction problem for another group. By lemma 2.4,
we have an isomorphism of Sp2m-modules:

A[2](sp2m; k) � resSp4m

Sp2m
VV(kω2m),

where the embedding Sp2m ↪→ Sp4m is given by (2.2). By lemma 2.2, we know that

ressp4m

sp2m
VV(kω2m) � ressp4m

�(sp2m)VV(kω2m),

where the second embedding was described in (2.3). This second embedding has the
advantage that by restricting the representation first to the maximal semisimple Lie subalgebra
sp2m ⊕ sp2m, we get already a description of VV(kω2m) as a sum of tensor products of sp2m-
modules, which will simplify the comparison with the decomposition of the Zhu algebra in
theorem 1.1.

Step 2. It remains to determine the Sp2m × Sp2m structure of the representation
resSp4m

Sp2m×Sp2m
VV(kω2m). We use geometric methods. Let P2m ⊂ Sp4m be the maximal parabolic

subgroup associated with the weight ω2m and set Y = Sp4m/P2m ⊂ P(VV(ω2m)). We denote
by Ŷ ⊂ VV(ω2m) the affine cone over the projective variety.

The group Sp4m acts on the affine variety Ŷ and hence on its coordinate ring C[Ŷ ]. As
Sp4m-module, this ring is the direct sum:

C[Ŷ ] =
⊕
��0

VV(�ω2m).

The ring C[Ŷ ] is naturally graded with VV(�ω2m) as �th graded component.
Let U ⊂ G = Sp2m × Sp2m be the unipotent radical of a Borel subgroup. In a

representation of G the U-fixed vectors are sums of highest weight vectors. The ring C[Ŷ ]U

of U-invariant vectors completely determines the structure of C[Ŷ ] as G-representation.
�

Proposition 4.2. The ring of U-invariant functions

C[Ŷ ]U =
⊕
k�0

VV(kω2m)U

is a polynomial ring generated by its degree 1 elements of weight ωi ⊗ ωi for i = 0, . . . , m,
where ω0 denotes the trivial weight.

The proof will be given in step 4. As an immediate consequence, we get

Corollary 4.3.(
resSp4m

Sp2m×Sp2m
VV(kω2m)

) =
⊕

λ=∑m
i=1 aiωi∑
ai�k

V (λ) ⊗ V (λ).

Step 3. Proof of theorem 4.1. The theorem follows now from corollary 4.3 together with
lemma 2.4, theorem 1.1 and (2.1).

Step 4. It remains to prove proposition 4.2. The first step in this direction is as follows.

Proposition 4.4. The action of G = Sp2m × Sp2m on Y = Sp4m/P2m is spherical, i.e. a Borel
subgroup of G has a dense orbit in Y.

Proof. We use the local structure theorem [BLV], which states the following.
Let G be a connected complex reductive algebraic group. Suppose Y is a normal G-variety

and y ∈ Y is such that the stabilizer Gy of y is a parabolic subgroup of G, i.e. the orbit G ·y is a

10
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projective variety. Let Q be a parabolic subgroup opposite to Gy. Denote by Qu the unipotent
radical of Q and set L := Gy ∩ Q. �

Theorem 4.5 ([BLV]). There exists a locally closed, affine subvariety Z of Y such that Z
contains y and is stable under the action of L, Qu.Z is open in Y, and the canonical map
Qu × Z → Qu · Z is an isomorphism of varieties.

In our situation, we have Y = Sp4m/P2m, y = 1 is the class of the identity, Gy is
R = Pm × Pm, where Pm ⊂ Sp2m is the maximal parabolic associated with the fundamental
weight ωm. Let Q be the opposite parabolic subgroup, then L = R ∩ Q = GLm × GLm.

Denote by Qu the unipotent radical of Q and let

O = G.1 � (Sp2m × Sp2m)/(Pm × Pm) = G/R

be the closed orbit in Y. If we apply the local structure theorem to this situation, then we may
assume that Z is smooth since Y is smooth. Moreover, the action of G on Y is spherical if the
action of L on Z is spherical. Consider the normal bundle N of O in X with fiber N at the coset
1 of the identity in G/R. Then N is isomorphic (as L-module) to the tangent space TyZ of the
L-fixed point y. It follows now by Luna’s slice theorem that the action of L on Z is spherical
if and only if the action on N is spherical. Now as the representation of L = GLm × GLm we
have that N = C

m ⊗ C
m, which is a spherical action.

Let Ŷ be the affine cone over Y. Since the coordinate ring C[Ŷ ] of the affine cone over
Y = Sp4m/P2m is a unique factorization ring, it follows (see for example [L1], lemma 1)

Corollary 4.6. The ring of U-invariant functions:

C[Ŷ ]U =
⊕
��0

VV(�ω2m)U

is a polynomial ring.

Step 5. To finish the proof of proposition 4.2, we have to show that the generators of
C[Ŷ ]U are of degree 1 and have the desired weights.

To calculate the Sp2m × Sp2m character, recall that (see for example [FH], theorem 17.5)

charVV(ω2m) = char2m(C2m ⊕ C
2m) − char2m−2(C2m ⊕ C

2m). (4.1)

More generally, for all p = 1, . . . , 2m one has

charVV(ωp) = charp(C2m ⊕ C
2m) − charp−2(C2m ⊕ C

2m). (4.2)

Using (4.1) and (4.2), one easily verifies that, as Sp2m × Sp2m module, we have

VV(ω2m) = C ⊕ V (ω1) ⊗ V (ω1) ⊕ V (ω2) ⊗ V (ω2) ⊕ · · · ⊕ V (ωm) ⊗ V (ωm).

Let f0, . . . , fm ∈ VV(ω2m) be the highest weight vectors for the Sp2m × Sp2m-action, where
f 0 is a Sp2m × Sp2m invariant function and fi is of weight ωi ⊗ ωi for i � 1. Since C[Ŷ ]U

is a polynomial ring, the grading and weights imply that these elements are algebraically
independent. In addition, if these elements do not generate the ring, then necessarily the Krull
dimension dim C[Ŷ ]U > m + 1. So proposition 4.2 is a consequence of the following lemma.

Lemma 4.7. The Krull dimension dim C[Ŷ ]U = m + 1.

Proof. Since C[Ŷ ] is a UFD, U is connected and has no non-trivial characters, C(Ŷ )U is the
quotient field of C[Ŷ ]U . By Rosenlicht’s theorem [R], generic orbits of an arbitrary action of a
linear algebraic group on an irreducible algebraic variety are separated by rational invariants,
which implies in our case that trdegC(Ŷ )U = dim Ŷ − dim(generic orbit).

11
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The maximal unipotent subgroup of GLm × GLm acts freely on an open subset of
C

m ⊗ C
m, so the local structure theorem (step 4) shows that U operates freely on an open

subset of Y and hence does so on Ŷ . Since the co-dimension of a generic U-orbit in Ŷ is m + 1,
this finishes the proof of the lemma and hence of proposition 4.2. �

5. The orthogonal case

In this section, we consider the case of orthogonal algebras so2m and so2m+1. Our goal is to
answer questions (i) and (ii) from section 1. Unfortunately, at the moment we are not able to
answer these questions completely. The reason is that the C2-algebra A[2](son; k) is bigger
than the representation V (kωn) of so2n. Therefore, we can control only a certain quotient of
the C2-algebra. The details are given below.

5.1. Even orthogonal case: the setup

For the enumeration of fundamental weights we use the same notation as in [B]. Let ω1, . . . , ωm

be the set of fundamental weights of so2m. The highest root is θ = ω2, and for λ = ∑m
i=1 aiωi

the condition (λ, θ) � k can be reformulated as

a1 +
m−2∑
i=2

2ai + am−1 + am � k.

We also note that for even m all representations are self-dual and for odd m spin representations
are dual to each other V (ωm−1)

∗ � V (ωm). Thus, theorem 1.1 for g = so2m can be
reformulated as

A(so2m; k) �
⊕

λ=∑m
i=1 aiωi

a1+
∑m−2

i=2 2ai+am−1+am�k

Vλ ⊗ V ∗
λ ,

where V (λ)∗ = V (λ) for even m and

V

(
m∑

i=1

aiωi

)∗
= V

(
m−2∑
i=1

aiωi + am−1ωm + amωm−1

)
for odd m.

Let p2m ⊂ so4m be the maximal parabolic Lie subalgebra associated with the fundamental
weight ω2m. We fix a Levi decomposition p2m = l ⊕ n and g = p2m ⊕ n−, where l � gl2m

as the Lie algebra and n � 2(C2m), respectively, n− � 2(C2m)∗ as l = gl2m-module. The
restriction of the gl2m-representation on n (respectively n−) to the subalgebra so2m ⊂ gl2m

remains irreducible; it is the adjoint representation of the orthogonal Lie algebra. Summarizing
we have

Lemma 5.1. As gl2m-module we have isomorphisms n � 2(C2m), n− � 2(C2m)∗, and as
so2m-module we have isomorphisms n � n− � so2m.

In the following, we always assume that for � ∈ N the orthogonal group SO2� is defined
to be the group leaving invariant the symmetric form on C

2� defined by the 2� × 2� matrix:

J =

⎛⎜⎜⎜⎜⎝
0 0 0 0 1
0 0 0 1 0
0 0 . · · 0 0
0 1 0 0 0
1 0 0 0 0

⎞⎟⎟⎟⎟⎠ .

12
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For an m × m matrix A let Ant be the transpose as in section 2. The Lie algebra of the
orthogonal group SO2m can then be described as the following set of matrices:

so2m =
{(

A B

C −Ant

) ∣∣∣∣A,B,C ∈ Mm,B = −Bnt , C = −Cnt

}
,

with the maximal torus t = diag(t1, . . . , tm,−tm . . . ,−t1) and the Borel subalgebra being the
upper triangular matrices of the form above.

The Lie algebra of the orthogonal group SO2m ⊂ GL2m embedded in the Levi subgroup
GL2m ⊂ SO4m can be seen as the set of matrices of the following form:

so2m =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

A B 0 0
C −Ant 0 0
0 0 A B

0 0 C −Ant

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣
A,B,C ∈ Mm,

B = −Bnt

C = −Cnt

⎫⎪⎪⎬⎪⎪⎭ ⊂ so4m. (5.1)

There is also a maximal reductive sub-Lie algebra of type Dm + Dm sitting inside so4m in the
following way:

so2m ⊕ so2m =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝

K 0 0 L

0 X Y 0
0 Z −Xnt 0
M 0 0 −Knt

⎞⎟⎟⎠
∣∣∣∣∣∣∣∣
K,L,M,X, Y,Z ∈ Mm

L = −Lnt ,M = −Mnt

Y = −Ynt , Z = −Znt

⎫⎪⎪⎬⎪⎪⎭ .

Let Im denote the m × m identity matrix and let J ′ be the 2m × 2m matrix of the form

J ′ =
(

0 Im

Im 0

)
.

Inside the Lie subalgebra so2m ⊕ so2m we have a diagonally embedded orthogonal Lie algebra
�(so2m), where

� : so2m ↪→ so2m ⊕ so2m, Q �→ (Q, J ′QJ ′−1
), (5.2)

which has the same maximal torus as the embedded orthogonal Lie subalgebra so2m described
in (5.1). As a consequence, we see

Lemma 5.2. For a so4m-representation VV(λ) let resso4m
so2m

VV(λ) be the so2m-representation
obtained via the embedding in (5.1) and denote by

resso4m

�(so2m)VV(λ)

the so2m-representation obtained via the embedding in (5.2).
Then resso4m

so2m
VV(λ) � resso4m

�(so2m)VV(λ).

5.2. The Lie algebra so4m and a quotient of A[2](so2m; k)

We fix the standard maximal torus (diagonal matrices) and Borel subalgebra (upper triangular
matrices) for gl2m; then the maximal torus and the Borel subalgebra of so2m and gl2m are
contained in each other. Let θ be the maximal root in the root system of so2m, we identify
the module so2m again with n− (lemma 5.1). Fix a highest root vector xθ , then xθ is a highest
weight vector for the adjoint action of so2m as well as for the irreducible action of gl2m on the
same representation space. It follows that

xk+1
θ ∈ S•(so2m) = S•(2(C2m))∗ = S•(n) (5.3)

is a highest weight vector of weight (k + 1)ω2 for the action of the orthogonal group SO2m

and of weight −(k + 1)(ε2m−1 + ε2m) for the general linear group GL2m. One can check easily
the following connection between xθ and the root vectors for the Lie algebra so4m.

13
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Lemma 5.3. Let X−α2m
∈ n ⊂ so4m be a root vector for the negative of the simple root α2m of

the root system of so4m. With respect to the embedding in (5.1), X−α2m
is a weight vector for

the Lie algebra so2m of weight θ .

To distinguish between the highest weight representations of the different groups, we
write V (λ) for the so2m-representations, V(λ) for the gl2m-representations and VV(λ) for the
so4m-representations of highest weight λ (whenever this makes sense).

The irreducible gl2m-module U(gl2m)◦xk+1
θ generated by xk+1

θ is of weight −(k+1)(ε2m−1+
ε2m), and hence does not remain irreducible when restricted to so2m, i.e. we have the following
sequence of inclusions of vector spaces:

U(gl2m) ◦ Xk+1
−α2m

= U(gl2m) ◦ xk+1
θ ⊃ U(so2m) ◦ xk+1

θ = U(so2m) ◦ Xk+1
−α2m

. (5.4)

Let VV(kω2m) be the irreducible Spin4m-module of highest weight kω2m. The nilpotent radical
n of p2m is Abelian (since ω2m is a cominuscule weight, see for example [FFL]). Recall the
following isomorphism of l-modules (see [FFL], lemma 3.1):

VV(kω2m) ⊗ C−kω2m
� S•(n−)

/〈
U(l) ◦ xk+1

θ

〉
,

where 〈· · ·〉 denotes the ideal generated by the corresponding subspace. Combining this
isomorphism with (5.4), we get as a consequence the following morphisms of gl2m-modules
respectively so2m-modules. In particular, we obtain a quotient of the C2-algebra A[2](so2m; k)

as a so4m-representation:

Lemma 5.4.

A[2](so2m; k) = S•(so2m)
/〈

U(so2m) ◦ xk+1
θ

〉
→ S•(2

C
2m)∗

/〈
U(gl2m) ◦ xk+1

θ

〉
= S•(n−)

/〈
U(gl2m) ◦ Xk+1

α2m

〉
� VV(kω2m) ⊗ C−kω2m

.

Remark 5.5. Of course, one can use the representation VV(kω2m−1) instead of VV(kω2m). It
turns out that in order to compare Zhu’s algebra and the C2-algebra of type Dm one has to use
the first representation for odd m and the second one for even m. We work out in details the
even m case. The odd case is considered in subsection 5.4.

5.3. The so2m × so2m-decomposition of VV(kω2m)

In the following, we investigate the decomposition of VV(kω2m) as so2m-module. By
lemma 5.2 it suffices to describe the so2m × so2m-module structure.

We proceed as in the symplectic case and use geometric methods: let P2m ⊂ Spin4m be
the maximal parabolic subgroup associated with the weight ω2m and set Y = Spin4m/P2m ⊂
P(VV(kω2m)). We denote by Ŷ ⊂ VV(kω2m) the affine cone over the projective variety.

The group Spin4m acts on the affine variety Ŷ and hence on its coordinate ring C[Ŷ ]. As
Spin4m-module, this ring is the direct sum:

C[Ŷ ] =
⊕
��0

VV(�ω2m).

The ring C[Ŷ ] is naturally graded with VV(�ω2m) as �th graded component. Let U ⊂ G =
Spin2m × Spin2m be the unipotent radical of a Borel subgroup.

14
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Proposition 5.6. The ring of U-invariant functions

C[Ŷ ]U =
⊕
k�0

VV(kω2m)U

is a polynomial ring generated by its degree 1 elements of weight ωm ⊗ ωm and ωm−1 ⊗ ωm−1

and the degree 2 elements ωi ⊗ ωi for i = 0, . . . , m − 2, where ω0 denotes the trivial weight.

As an immediate consequence, we get

Corollary 5.7.

resSpin4m

Spin2m×Spin2m
VV(kω2m) =

⊕
λ=∑m

i=1 aiωi

(
∑m−2

i=1 2ai )+am−1+am�k

k−am−1−am≡0 (mod 2)

V (λ) ⊗ V (λ).

It remains to prove proposition 5.6. A first step in this direction is the following.

Proposition 5.8. The action of G = Spin2m × Spin2m on Y = Spin4m/P2m is spherical, i.e. a
Borel subgroup of G has a dense orbit in Y.

Proof. As before we use the local structure theorem [BLV]. In our situation, we have
Y = Spin4m/Pm, y = 1 is the class of the identity, Gy is R = Pm × Pm, where Pm ⊂ Spin2m

is the maximal parabolic associated with the fundamental weight ωm. Let Q be the opposite
parabolic subgroup, then l = glm × glm.

Denote by Qu the unipotent radical of Q and let

O = G.1 � (Spin2m × Spin2m)/(Pm × Pm) = G/R

be the closed orbit in Y. If we apply the local structure theorem to this situation, then we may
assume that Z is smooth since Y is smooth. Moreover, the action of G on Y is spherical if the
action of L on Z is spherical. Consider the normal bundle N of O in X with fiber N at the
coset 1 of the identity in G/R. Then N is isomorphic (as L-module) to the tangent space TyZ

of the L-fixed point y. It follows now by Luna’s slice theorem that the action of L on Z is
spherical if and only if the action on N is spherical. Now as representation for the Lie algebra
l = glm ⊕ glm, we get the action on N = C

m ⊗ C
m, which is a spherical action. �

Let Ŷ be the affine cone over Y. Since the coordinate ring C[Ŷ ] of the affine cone over
Y = Spin4m/P2m is a unique factorization ring, it follows

Corollary 5.9. The ring of U-invariant functions

C[Ŷ ]U =
⊕
��0

VV(�ω2m)U

is a polynomial ring.

Proof of proposition 5.6. To finish the proof of proposition 5.6 we have to show that the
generators of C[Ŷ ]U are of the desired degrees and weights.

To calculate the so2m ⊕ so2m character, recall that (see for example [FH], theorem 19.2)
for the Spin4m-modules, we have

2m
C

4m = 2m(C2m ⊕ C
2m) = VV(2ω2m) ⊕ VV(2ω2m−1).
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Using the decomposition C
4m = (C2m ⊕ C

2m), with this description one verifies easily that,
as so2m ⊕ so2m-module, we have

resso4m

so2m⊕so2m
VV(2ω2m) = C ⊕ V (ω1) ⊗ V (ω1) ⊕ · · · ⊕ V (ωm−2) ⊗ V (ωm−2)

⊕ V (ωm−1 + ωm) ⊗ V (ωm−1 + ωm)

⊕ V (2ωm−1) ⊗ V (2ωm−1) ⊕ V (2ωm) ⊗ V (2ωm).

For the fundamental representation, one computes

resso4m

so2m⊕so2m
VV(ω2m) = V (ωm−1) ⊗ V (ωm−1) ⊕ V (ωm) ⊗ V (ωm).

Let f0, . . . , fm ∈ VV(ω2m) ⊕ VV(2ω2m) be the highest weight vectors for the so2m ⊕ so2m-
action, where f 0 is a so2m ⊕ so2m-invariant function of degree 2, f1, . . . , fm−2 are of weight
ωi ⊗ ωi for i = 1, . . . , m − 2 and of degree 2, and fm−1, fm are of degree 1 and of weight
ωm−1 ⊗ ωm−1 and ωm ⊗ ωm, respectively.

The collection of functions f0, . . . , fm, f 2
m−1, fm−1fm, f 2

m is a basis for the subspace of
the highest weight vectors in VV(ω2m) ⊕ VV(2ω2m).

Since C[Ŷ ]U is a polynomial ring, the grading and the weights imply that the elements
f0, . . . , fm are algebraically independent. In addition, if these elements do not generate
the ring, then necessarily dim C[Ŷ ]U > m + 1. So proposition 5.6 is a consequence of the
following lemma, which is proved along the same lines as lemma 4.7. �

Lemma 5.10. dim C[Ŷ ]U = m + 1.

5.4. The dual realization

Recall that for odd m not all representations of so2m are self-dual. Therefore, corollary 5.7 does
not allow us to compare Zhu’s algebras and the C2-algebras. In fact, to handle this problem,
we consider the weight ω2m−1 of so4m (instead of ω2m). This weight is also cominuscule and
thus everything works for ω2m−1 as well. Below we formulate the analogs of proposition 5.6
and corollary 5.7.

Fix an odd m. Let P2m−1 ⊂ Spin4m be the maximal parabolic subgroup associated with the
weight ω2m−1 and set Y ′ = Spin4m/P2m−1 ⊂ P(VV(kω2m−1)). We denote by Ŷ ′ ⊂ VV(kω2m−1)

the affine cone over the projective variety.

Proposition 5.11. The ring of U-invariant functions

C[Ŷ ′]U =
⊕
k�0

VV(kω2m−1)
U

is a polynomial ring generated by its degree 1 elements of weight ωm ⊗ ωm−1 and ωm−1 ⊗ ωm

and the degree 2 elements ωi ⊗ ωi for i = 0, . . . , m − 2, where ω0 denotes the trivial weight.

As an immediate consequence, we get

Corollary 5.12.

resSpin4m

Spin2m×Spin2m
VV(kω2m−1) =

⊕
λ=∑m

i=1 aiωi

(
∑m−2

i=1 2ai )+am−1+am�k

k−am−1−am≡0 (mod 2)

V (λ) ⊗ V (λ)∗.
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5.5. Comparison

Summarizing, we obtain the following.

Proposition 5.13. We have an isomorphism of so2m modules

S•(so2m)
/〈U(gl2m) ◦ ek+1

θ

〉 �
⊕

λ=∑m
i=1 aiωi

(
∑m−2

i=1 2ai )+am−1+am�k

k−am−1−am≡0 (mod 2)

V (λ) ⊗ V (λ)∗, (5.5)

providing a surjection of A[2](so2m; k) to the righthand side of (5.5).

5.6. The odd orthogonal case

In this subsection, we consider the case g = so2m+1. All the constructions as above are valid
in this case as well, so we only formulate the final result in the following proposition.

Proposition 5.14. There exists a surjection of so2m+1 modules:

A[2](so2m+1; k) →
⊕

λ=∑m
i=1 aiωi

(
∑m−1

i=1 2ai )+am�k

k−am≡0 (mod 2)

V (λ) ⊗ V (λ)∗.
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[DFMS] Di Francesco P, Mathieu P and Sénéchal D 1996 Conformal Field Theory (Graduate Texts in Contemporary

Physics) (Berlin: Springer)
[DM] Dong C and Mason G 2006 Integrability of C 2-cofinite vertex operator algebras arXiv:math/0601569

[F] Feigin E 2009 The PBW filtration Represent. Theory 13 165–81
[FFL] Feigin B, Feigin E and Littelmann P 2009 Zhu’s algebras, C2-algebras and abelian radicals

arXiv:0907.3962
[FH] Fulton W and Harris J 1991 Representation Theory (Graduate Texts in Mathematics) (New York: Springer)
[FZ] Frenkel I and Zhu Y 1992 Vertex operator algebras associated to representations of affine and Virasoro

algebras Duke Math. J. 66 123–68
[GG] Gaberdiel M R and Gannon T 2008 Zhu’s algebra, the C2 algebra, and twisted modules arXiv:0811.3892

[GabGod] Gaberdiel M R and Goddard P 2000 Axiomatic conformal field theory Commun. Math. Phys. 209 549–94

17

http://dx.doi.org/10.1090/S0002-9947-03-03413-5
http://dx.doi.org/10.1007/BF01388749
http://www.arxiv.org/abs/math-ph/0508015
http://www.arxiv.org/abs/math/0601569
http://dx.doi.org/10.1090/S1088-4165-09-00349-5
http://www.arxiv.org/abs/0907.3962
http://dx.doi.org/10.1215/S0012-7094-92-06604-X
http://www.arxiv.org/abs/0811.3892
http://dx.doi.org/10.1007/s002200050031


J. Phys. A: Math. Theor. 43 (2010) 135206 E Feigin and P Littelmann

[GK] Gaberdiel M R and Kausch H G 1996 A rational logarithmic conformal field theory Phys. Lett.
B 386 131–7

[GN] Gaberdiel M R and Neitzke A 2003 Rationality, quasirationality and finite W-algebras Commun. Math.
Phys. 238 305–31

[K1] Kac V 1990 Infinite Dimensional Lie Algebras 3rd edn (Cambridge: Cambridge University Press)
[K2] Kac V 1998 Vertex algebras for beginners 2nd edn University Lecture Ser. 10 (Providence, RI: AMS)
[K3] Kac V 1980 Some remarks on nilpotent orbits J. Algebra 64 190–213
[KT] Koike K and Terada I 1987 Young-diagrammatic methods for the representation theory of the classical

groups of type Bn, Cn, Dn J. Algebra 107 466–511
[Li] Li H 1999 Some finiteness properties of regular vertex operator algebras J. Algebra 212 495–514
[L1] Littelmann P 1994 On spherical double cones J. Algebra 166 142–57
[Lw] Littlewood D E 1940 The Theory of Group Characters and Matrix Representations of Groups (New York:

Oxford University Press)
[M1] Miyamoto M 2004 Modular invariance of vertex operator algebras satisfying C2-cofinitness Duke Math.

J. 122 51–91
[M2] Miyamoto M 2003 A theory of tensor products for vertex operator algebra satisfying C2-cofiniteness

arXiv:math.QA/0309350
[N] Neitzke A 2000 Zhu’s theorem and an algebraic characterization of chiral blocks arXiv:hepth/0005144
[R] Rosenlicht M 1963 A remark on quotient spaces An. Acad. Brasil. Ciêinc. 35 487–9
[Z] Zhu Y 1996 Modular invariance of characters of vertex operator algebras J. Am. Math. Soc. 9 237–302

18

http://dx.doi.org/10.1016/0370-2693(96)00949-5
http://dx.doi.org/10.1016/0021-8693(80)90141-6
http://dx.doi.org/10.1016/0021-8693(87)90099-8
http://dx.doi.org/10.1006/jabr.1998.7654
http://dx.doi.org/10.1006/jabr.1994.1145
http://dx.doi.org/10.1215/S0012-7094-04-12212-2
http://www.arxiv.org/abs/math.QA/0309350
http://www.arxiv.org/abs/hepth/0005144
http://dx.doi.org/10.1090/S0894-0347-96-00182-8

	Introduction
	1. Zhu's algebra and the  C2  -algebra
	1.1. Definitions
	1.2. The general CFT-based approach

	2. The Lie algebra sp4m and the C2-algebra A(sp2m; k)
	2.1. Sympletic algebras: generalities
	2.2. The Lie algebra sp4m and A[2](sp2m; k)

	3. The graded character of the C2-algebra for sp2m
	4. Comparing dimensions in type Cm
	5. The orthogonal case
	5.1. Even orthogonal case: the setup
	5.2. The Lie algebra so4m and a quotient of A[2](so2m; k)
	5.3. The so2m × so2m-decomposition of VV(kω2m)
	5.4. The dual realization
	5.5. Comparison
	5.6. The odd orthogonal case

	Acknowledgments
	References

